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The openings and shuttings of intlivithlal ion channel molecules can be motlelletl in 
terms of an underlying Markov process with discrete states in contimlous time. In 
practice, some of the open times, and/or shut times, are too short to be detected 
reliably, making the thlrations of some of these intervals appear to he longer than 
they really are. Under certain assumptions about how this happens, the probability 
densities of these apparent times have previously been obtained. It has h e n  shown 
that the ability to distinguish between alternative postulated reaction mechanisms 
can he greatly improved by considering bivariate distributions. In this paper we 
obtain joint distrit)utions, and hence conditional tlistributions, of adjacent apparent 
open and shut times. Numerical examples illustrate what insight these corlditiorlal 
distributions may provide about the underlying mechanism. Bivariate tlistril~utions 
are readily generalized to mnltivariate distribntions which enable the likelihood for 
an entire single-channel recording to be computed, and hence efficient maximum 
likelihood estimates for the mechanism's rate constants can be obtained. Numerical 
examples of such fitting are given. 

1. Introduction 

Single channel records always seem to show phenomena that are just too rapid too 
he resolved easily, whatever efforts are made to increase the resolution. With present 
techniques, an opening of the ion channel that is shorter than about 25 ps will not be 
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detectable, even in the hest records, given the noise in the recording. The resolution 
is usually corlsitlerahly worse than this, to  an extent that depends on the signal-to- 
noise ratio of the recording and on the method uset1 for its analysis (see Colquhourl & 
Sigworth (1.995) for details). Events (openings or shuttings) of the charme1 that have 
a duration rrluch shorter than the resolution will not he detected, antl the results 
will therefore he distorted to an extent that can be quite serious in cases of practical 
interest. 

In this paper we address thc problem of obtaining joint antl conditional tlistri- 
tmtions of the atljacent apparent open and shut times that are recorded when brief 
events are rriissetl, and their use for tlirect rriaxirriurri likelihood fitting of entire clata 
records. This is an important prohleril, because Fredkin et al. (1985) showed that, 
when the tlata show correlations, it is not possible to extract all the information from 
the experirilerltal record hy exarriination of only the univariate distributions (e.g. of 
open times, or of shut times), hut it is necessary also to  exploit hivariate tlistrihutions 
(e.g. that of open time and acljacent shut time). It was subsequently tlerilonstratetl 
very clearly by Maglehy and co-workers that the ability to  distinguish between al- 
ternative postulated reaction rriecharlisrns can he greatly irnprovetl by exploitation 
of the correlatiorlal inforrnatiorl contained in bivariate distributions ( M c M a m ~  et 
al. 1985; Blatz & Magleby 1.989; Maglehy & Weiss 1990b; Magleby & Song 1992). 
Although some of the relevant information can he recovered by measuring correla- 
tion coefficients (e.g. between the length of one opening antl the length of the next 
opening) (Fretlkin et al. 1985; Colquhourl & Sakrnarlrl 1985; Colquhoun & Hawkes 
1987), the graphical displays are generally preferable. For example, one can plot the 
mean open time conclitional on the length of the adjacent shut time (see, for exarnple, 
Blata & Maglehy 1989; Gibb & Colquhourl 1992). These hivariate antl conditional 
tlistrihutions can be predicted, on the hasis of any postulated rnechanisrn, for c o n  
parison with experirnental tlata, but in order for these methods to be useful with real 
experirnental data, they need to he extentled to allow for limited ahility to detect 
brief events; that is the purpose of this paper. Once such tlistrihutions have been 
obtained the door is opened to  doing tlirect rnaxinlurn likelihood fits of a reaction 
rnechanisril to  experimental tlata (see Sine et al. 1990), antl we shall also discuss this 
problem. 

At this point it is worth noting that it is quite possible for observations to  ex- 
hibit correlations when in fact the nnclerlying charme1 rrlecharlisrn predicts that there 
sholiltl be none. The fact that time resolution is limited can itself protluce spnri- 
ous correlations under some circumstances (Srotlzinski 1994; Colquhoun & Hawkes 
1995a, p. 461.). This fact provides another good reason for making correct allowance 
for missed events when analysing real tlata. Another hazard arises from the fact that 
it is also possible for spurious correlations to arise if the recording is rim& from a 
heterogeneous population of channels. 

The tlefinition of an apparent open t ime used here, and in most other work on the 
subject, is as follows. If a fixed (leacl-time E is assurrietl then an apparent o p e r ~ r q  is 
ttefirletl as starting with an opening of dnration of a t  least E followed by any nlirnl~er 
of openings antl shuttings, all the shut t,irrles being shorter than E; the apparent 
opening ends when a shut time longer than occurs. A sirililar tlefirlitiorl is usetl for 
apparent shut times. Open times defined in this way will he referred to as e-open 
times (extended openings). This tlefinition should give a good approxirriatiorl to the 
values that are rneaslirecl from an experimental record in most cases (though this is, 
to some extent, dependent on what method is usetl for rrieasliring the record). 
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Several approximate rriethotls liavc been tlescribetl for coping with this 'missed 
event' problem (see, for example, R,oux & Sauvi: 1955; Blatz & Magleby 1986; Yeo 
et al. 1988; Cronzy & Sigwortli 1990). Ball & Sansorii (1988a.) ohtairictl the distrib~i- 
tiori of apparent openings antl shuttings in terms of Laplace transforms. The exact 
probability density was found by Hawkes et al. (1990) and very accurate asymptotic 
forms were ot)tained hy Jalali & Hawkcs (1992a, b) and further discnssed in Hawkes 
et  al. (1992). 

It is supposed in what follows that all events that are shorter than some fixed 
resolution or dead-time (denoted E) are not detected, while all events that are longer 
than E are detected arid measured accurately. The resolution is usually not well 
tlefinecl, so it must be imposed ret,rospectively on the measurerrients by, for example, 
concatenating any ot)served shut time below E with the open times on each side of 
it to produce one long 'apparent opening' (Colquhoun & Sigworth 1995). This will 
happen automatically with very short shut times which will not he observed anyway. 
Short openings arc similarly treated to obtain 'apparent shut times'. 

Although tlie expressions that are tlcrivetl here are ohvio~isly more complicated 
than in the ideal (E = 0) case, their numerical evaluation requires no new techniques 
(see Colquhourl & Hawkes (199%) for an introduction). 

2. Notation and basic results 

The principles and notation are those employed by Hawkes et al. (1990, 1992). The 
~mtlerlying system is rnotlelled by a finite-state Markov process, X( t ) ,  in continuous 
time; X( t )  = i denotes the systerri is in state i at  time t. The rate constants for 
transitions between states i antl j ( i  # j )  are the elements, q;j, of thc transition rate 
matrix Q ,  and tlie diagonal elements, yii, arc defined so that the rows sum to zero. 

The  ideal case 

If tlie k states of tlie systerri are divided into subset A coritainirig tlie open states, 
kA in numher, arid sulwet F containing tlie shut states, kF in muriber, so ka+kF = k, 
then the Q matrix may he partitioned as 

A semi-Markov process (for an elementary introduction see, for examplc, Cox & 
Miller 1965, ch. 9) is embetltled in the proccss at  tlic instants at  which the system 
enters tlie set A or F. The intervals between these points have prohability densities 
given hy thc matrix 

Thus each event is, alternately, tlie beginning of an open period or tlie beginning 
of a closcd period. The elements, gij(t), of the top right-hand corner of this matrix 
give the probability density for staying within tlie operi states (set A) for a time t 
and then leaving for shut state j ,  conditional on starting in operi state i (see, for 
details, Colquhoun & Hawkes 1982). The Laplace transform of this matrix will he 
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denoted hy 

The Markov chain emhetitled at  these open shut transition points, ignoring the 
duration of the intervals hetween them, has transition probability matrix 

where 

GAF = LW GAF(~)  (it = G;,(o) = -Q;~QA,, 
W 

I 
GFA = 1 G F A ( ~ )  (it = G;,(()) = QGQFA. (2.6) 

Thus, for examplc, GAF has elements that give tlie probability of leaving the set of 
open states for shut state j ,  conditional on starting in open state i ,  regardless of how 
long it takes for this transition to occur. 

Colquhoun & Hawkes (1.982), using the above results as a starting point, went on 
to study tlie dynamics of opening arid shutting in some detail. 

The case of limited time resolution 

To modify the above itlcas so as to tlescrihe the apparent open antl shut times, 
allowing for the omission of short intervals as described in the previous section, we 
follow Ball & Sansom (1988~)  by consitleririg a semi-Markov process, the events of 
which occur at  time I after the start of observed open or closed periods. An event 
type (open or shut) will be the state of the ~intlerlying Markov process, X( t ) ,  which 
is occupied at  that time. The dnrations of the intervals hetween events, which we 
call e-open arid e-closed intervals, are, according to tlie previous definition, the same 
as the tluratioris of the observed, or apparent, operi antl closed intervals, because we 
have taken the same to detect hoth open antl closed periods. The only difference 
therefore is that the whole process is shifted back by a constant I. This makes the 
theory somewhat easier, because at  tlie event times so defined we know whether 
there is an apparent operi time or apparent shut time in progress. The theory can be 
done directly in terms of tlie apparent intervals, but it is not quite so elegant. These 
definitions are illustrated in figure 1. 

Intervids of this process will be alternately e-open and e-closed, so tlie transition 
densities, analogous with those in (2.3), will he given by a matrix of the form 

with Laplace transform 
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I apparent open time I 

I e-open interval l 

t;' 
excess e-open interval 

'T' 
Figure l. Illustration of the definition of apparent open time which contains two short shut times 
(of duration less than 0. The e-open time is defined to start a t  time < after the start of the 
apparent time, and end time < after it finishes, and is thus the same length. 

The Markov chain erribecltletl a t  the evcrit points (the times a t  which events occur) 
has transition matrix 

"C .- 0 GAT 
- GTA 0 1 

As in equations (2.5), (2.6), we simplify the notation wheri setting S = 0 in a Laplace 
transform by orriittirlg the '*' and the argnnient: for example, in this case G>T(0)  
is written as 'GAF. As above, this gives probabilities for transitions from apparently 
open to apparently shut states regardless of wheri tlie transition occurs. 

The equilibrium vector 

The distribution of e-open times that will he ohtained later requires that we specify 
the probability that an e-opening starts in each of tlie open (set A) states. The 
vector, &*, containing these probabilities can bc fonntl, for a record a t  equilihriurn, 
as follows. By looking only a t  alternate evcnts, and ignoring tlie interval durations, 
we have a Markov chain on tlie .A states with transition matrix GaF antl an 
equilihriurn probability vector, 4A, that satisfies 

where UA is a vector, tlie elements of which, kA in number, are all unity. Once we 
have a method for evaluating G A T  antl GTA, this equation can he solved for C$* 
using one of the niethotls tlescrihrd by Colquhoun & Hawkes (1995b) for obtaining the 
equilibrium state occupancies from tlie Q matrix (the equation for which is similar 
to  (2.10)). 

Similarly, a Markov chain a t  the closed events has transition matrix eGFA GAF 
with equilitxium vector 

43 = 4 A  CAT.  (2.11) 

Distribution of e-open lifetimes 

We will tliscuss the protzhility density function of e-open times; the distribution 
of e-closed times can be obtained simply hy interchanging A and .F in the results. 
Let A ~ ( , ~ )  be a matrix, the i j th  element ( i ,  j E A) of which is 

A ~ i j  ( U )  = P[X(71,) = j antl no shut time is detected over ( 0 ,  U )  IX(0) = i] , (2.12) 

where a detectable shut time is a sojourn in F of duration greater than E .  This is a 
kind of reliability or survivor function: it gives the probability that an e-open time, 
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starting in state i ,  has not yet finished after time U and is currently in state j .  Then 
the transition density is given by 

because, for the c-open interval to  end at time t ,  there rriust he a transition from A 
to  .F at  time t - (with no detectable sojourn in .F up to  that time), followed by a 
sojourn of a t  least < in F. The probalility density of otxervetl open times is given 
by 

where u~ is a vector, the elements of which, kF in nunher, are all unity. Examples 
of distributions of ot)servetl open ant1 shut times, with various resolutions, are given 
later (figures 5 and 6). 

The distribution of c-open tirries covers the range t = to oo because, by definition, 
any e-open time, say, rriust exceed in tluration. Therefore, for these two tlensities, 
and all others sut)sequently quoted in this paper (except (2.15)), we take it as implicit 
that the density is zero for t < I. It may soriletimes he more convenient to consider 
the excess time I / , ,  = 7;) - I, which ranges from 0 to CO. We will call this the excess 
c-opcn interval (see figure 1.). Then the probability density j7;, (t) = .frJ,, (t - <) and so 

The problem of evaluating this distribution of apparent open tirries, and the other 
tlistrit~ntions derived here, reduces to the problem of evaluating the survivor f~mction, 
A ~ ( u ) ,  and its analogue for apparent shut tirries F R ( ~ ) .  This will he described next. 

Exact c'va1uatio.n of thc survivor fwnckion A ~ ( u )  

Hawkes et al. (1990) show that the Laplace transforrri of A ~ ( u )  can be written as 

where S:3(s) is defined t)y the equation 

When rriultiplietl by QFA, this is just the Laplace transform of the shut time densities 
for shut tirries that are shorter than <, which are the elements of 

where B ( t )  is a unit step function. Thus the expression 

(where C denotes a Laplace transforrri) convolves openings (of any length) with shut 
times that are less than I. 

Equation (2.16) was given by Ball & Sansorn ( 1 9 8 8 ~ ) ~  using different notation. 
Substituting (2.17) into (2.16), and using (2.4) yields the alternative expression 

sI - QAA - QAF ePst exp(QFyt) tlt (2.18) 

I'hil. Tmns. R. Soc. Lond. A (1'3%) 
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When tlie resolution is perfect, [ = 0, then S > 3 ( ~ )  = 0, *R(?L) = exp(QAA?h), and 
all the results reduce to those given by Colquhoun & Hawkes (1982). 

Hawkes et al. (1990) inverted the Laplace trarisforrri in (2.16), and hence obtained 
an exact solution for the PDF, fTO(t). The solution has a different form for each of 
the intervals t = 0 -+ <, t = [ -+ 2 [ ,  etc. The solutions are not, as in the ideal case, 
mixtures of k A  exponeritials, but they are products of polynomials in t (of degree that 
increases for each sl~ccessive iritcrval) and exponentials; furthermore, the exponential 
terms involve not the kA eigenvalues of QAA, but the h: eigenvalues of Q .  However, 
the precision of the asymptotic solution (see below) is such that the exact solution 
need be calculated only for tlie fjrst three intervals, and for these the exact solution is 
relatively sirriple. We therefore give below the exact results for apparent open times 
in the ranges t = 0 t [, t = [ -+ %[ arid t = 2[ t 3[, which turn out to be adequate 
in practice. 

The starting point is the representation of the matrix Q in terms of the spectral 
matrices Ai (see, for example, Colquhoun 8.c Hawkes 1982), so that, assuming the 
matrix -Q has distinct eigerivalues X i ,  

Let ALAF be the AT partition of A,, and define 

where 
A k 

No(u) = Czou e x p - h , ~ ) ,  NI ( U )  = ~ ( C Z l O  + C,ll(i) exp(-h,u), (2.22) 
L=l ,=l 

and the matrices C,,,,, are given recursively by 

C700 = AAA, C~III = C(D,C,IIO + D J c z ~ ) / ( h 7  7 )  C711 = Dzc2.0. (2.23) 
J#Z 

Thus the PDF of the apparent open times, defined in (2.14), can be written as 

where 

Phil. Tmns .  R. Soc. Lond. A (1996) 



and the constants yzm, are given by 

Yzmr = ( P A C ~ ~ ~ Q A F ~ ~ P ( Q F F < ) ~ F .  

We use the first two intervals, 0 < 71 < < and < < v < 2<, in (2.21) because, from 
(2.13) and (2.14), the functions .fI,,(t) and 'GAF(t) depend on AR(t - <). Hawl~es 
P I  al. (1990) do give further exact results for 71 > 2<, and herice t > 3<, but the 
following approxirnatiori is preferred. 

Approzimate evaluation, of the sse~uivor junction *R(u) jor larye u 

For values of apparent open time t > 3< we shall use, in place of the exact solution, 
an asymptotic forrri which has been found in practice to be very accurate (even for 
srrialler values of t than this, in some cases). From equation (2.18) we see that the 
asymptotic hellaviour of *R(u) depends on the values of s which render singular the 
rriatrix W (S) defined as 

W ( s )  = s I  - H ( s ) ,  (2.25) 

where 

H ( s )  = QAA + QAF(~I - QFF)-'[I - ex~)(-(sI  - QFFKIQFA, (2.26) 

provided s is not an eigenvalue of QF3 SO that ($1 - QFF)-' exists. In other words, 
we are interested in the roots of the deterrniriarital equation 

det [W(s)] = 0. (2.27) 

Models of ion channels are normally assurried to obey the principle of rriicroscopic 
reversibility, in the absence of external energy supply (see Colquhoun & Hawkes 1982, 
p p  24 25). Under these conditions, Jalali & Hawkes (1992b) proved that det W(s )  = 

O has exactly /cA real roots, denoted S,. If these are distinct, then, as v + m, 

where 

T+ = -l/s+, A ~ +  = c i r7 / rLW' (~ , ) c , ,  (2.29) 

and ci ,  ri are the right and left (cohnnn and row) eigerivectors of H ( s 7 )  corresponding 
to the root s i ,  which is also an eigenvalue of H( s7 ) .  

The rriatrix derivative in the above results can be evaluated as 

W'(.?) = I + QAF[S;~(S) (sI - Q ~ ~ ) '  - ( I  - S;F (S))] G>* (S), (2.30) 

where S j F ( s )  arid G>*(") are defined in equations (2.17) and (2.4), respectively. 
In the special case where there is only one open state and one shut state, Jalali 

& Hawkes (1992~)  showed that there will also be infinitely many corriplex conjugate 
pairs of roots. However, this is of no interest for the purposes of this paper. 

One consequence of these results is that, from quation (2.14), we can represent 
the asymptotic probability density of the e-open times in the forrri 
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It should be rioted that this approximation refers to large t, riot the whole distribution 
from t = C + m. However, if you do think of it as applying over the whole range from 
t = < -+ m, the density being zero for 0 < t < 5,  the ai can be thought of as areas. 
There is no reason why they should add up to exactly 1, though they are usually 
quite close (see exarrlples in Hawkes et al. (1992) and table 1 here). The beauty of 
this result is that it has exactly the same form, a mixture of kA exponentials, that 
is found in the case of perfect resolution (to which it reduces when < = 0). The 
time constants, 5 for the exponentials are, of course, different when brief events are 
missed. 

Similar results can be obtained for apparent shut times, by simply interchanging 
the roles of A arid 3 in the above equations, to obtain FR(u) arid hence GFA(t )  
and the corresponding probability density fTp (t) . 

Comparin,g observed and theoretical distributions: mod<fied areas 

It should be emphasized that the form (2.31) applies for 'large' t and does not, in 
general, give good results for t < 3< (although sometimes it does). It has, however, 
got the merit that it is a mixture of exponential distributions, and so can be compared 
directly with the ideal (C = 0) distribution, or with the multiexponential distribution 
which would commonly be fitted to experimental results (see Colquhoun & Sigworth 
1995). Such comparisons, strictly speaking, are riot necessary, because the exact 
distribution (e.g. equation (2.14) for observed open times) can be fitted, or, better, 
the whole of the data fitted simultaneously, as discussed in 5 5. Nevertheless, this 
sort of comparison is often convenient. The time constants can be compared directly, 
but the areas associated with each time constant can not, because the asymptotic 
distribution in (2.31), like the exact distribution, has zero probability for t < <. 
Before the comparison can be made, the asymptotic distribution must be projected 
back to t = 0, arid this is achieved by assuming that equation (2.31) applies for all 
t > 0 and rescaling it so that the total area is unity. The adjusted distribution of 
apparent open times then takes the form 

k: * 
h , ( t )  = a:(l/ri) exp-t/.), t 2 0. (2.33) 

i=l 

The factors eEITz have been incorporated into modified areas, a:, defined from 
t = O + o o a s  

a: = a,eEIT"~a,eEITt, (2.34) 

where a, were defined in (2.32), and the denominator serves to normalize the modified 
areas so that they add up to unity exactly. 

Such an acljustment, in effect, is an attempt to correct for missing short open times 
(but it does riot correct for the effect on apparent observed open times of missing 
short shut times). Examples of the use of such modified areas are given in 5 6 (see 
also Hawkes et al. 1992). 

3. Joint and conditional probability densities for adjacent intervals 

A number of authors have considered the correlation between successive open or 
shut intervals, with or without allowing for time interval omission (see, for exam- 
ple, Fredkin et al. 1985; Colquhoun & Hawkes 1977; Ball & Sansom 1988b; Ball et 
al. 1988). However, correlation coefficients tend to be relatively uninformative, arid 
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Figurc 2. Illustration of consecutive apparent sojourrls. A shut sojourn of tluratiorl tl is 
followcd by an open sojourn of tluratiorl t 2 .  

restricted in the range of values which can be achieved, when the marginal distri- 
butions have an exponential form (see, for exarnple, Dowriton 1970). The full joint 
distributions or conditional distributions will usually be more useful (see 5 1). 

Consider two consecutive intervals, for exarnple, a shut time of duration t l  followed 
an open tirrie of duration t2,  as illustrated in figure 2. 

The joint distribution of an apparent shut tirrie (e-shut tirne), T,, and the apparent 
open tirne, To, which irrirnediately follows it, is given by 

f ~ :  .,;, (t1, 62) = ( P 3  "G.FA(~~)  ('GAF(~z)u.F. (3.1) 

Dependmce of open t ime on, preceding shut time 

h convenient way to study the association between the two random variables 
without having to use three-dirnensiorial graphs is to use conditional densities; for 
exarnple, the tlistributiori of the apparent open tirne, conditional on the apparent 
shut time that precedes it, is given by 

.f:r,,lT, (t21t1) = fT, ,To(tl, tZ)/.fT:.(tl). (3.2) 

These distributions are easily computed from any specified rrlechariisrri (i.e. from the 
Q matrix) by means of the results given in the previous section. The exact forrris 
of 3R(u) and A ~ ( ~ ~ )  should be used for srriall values of 11, (in practice it has been 
found adequate to use the exact form for u less than 2<), and the asymptotic forrris for 
larger values. The result in (3.2) implies that, just as in the ideal case, the conditional 
distribution has exactly the same kA tirrie constants, ri, for the asymptotic forrris 
(as found in equation (2.29)) as for the unconditiorial derisity (equation (2.31)). The 
dependence of open time on adjacent shut time is manifested in the different areas 
for each of these cornponents in the coriditional and unconditional distributions. For 
the contlitional distribution, (3.2), the areas for the kA exporieritial components of 
the asyrriptotic form (still given by (2.31)) are given by 

= ~ i ( b ~  " G F A ( ~ ~ )  A ~ i ~ ~ ~ e ~ ~ ( ~ ~ ~ ~ ) ~ ~ / f ~ c  (t1). (3.3) 

These areas depend, of course, on the length, t l ,  of the preceding shut time on 
which the distribution is conditioned. Modified arctas can, if required, bct obtainctd in 
exactly the same way as for the unconditional tlistributiori (see the discussion at the 
end of 5 2). 

The predicted agreerrlerit between the tirrie constants of the conditiorial arid uri- 
conditiorial distributions was observed in analyses of experimental data by Blatz & 
Magleby (1989), Weiss & Magleby (1989), McManus & Magleby (1989) and Gibb 
& Colquhoun (1992). These authors show that the shape of the conditional distri- 
bution depends only on changes in the area associated with each tirrie constant, as 
predicted by the theory given here; they plot the area of each component against t l ,  
which is a useful way to represent the dependence. Exarnples of such plots are given 
by Srodziriski (1994). 
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Mean of the conditional distribution 

The mean apparent open time, for open times that follow an apparent shut time 
of length t l ,  is defined as 

E (To lTc= t l )=  t2fTolT,(t21t1)dt2. I" (3.4) 

A plot of this mean open time against t l  is a useful way to represent the dependence 
(see figure 9). 

The mean can be found by diff'erentiating the Laplace transform of (3.2), changing 
the sign and setting s = 0. This gives an (exact) expression for the mean as follows: 

where 

in which 

V; (S) = I - G$i (S) Sji (s)G jA (S), 

and 

A similar expression will hold for 

Initial vector for cm e-opening 

The dependence of the e-open time on the duration of the previous e-shut time 
results entirely frorri the fact that the entry probabilities (or 'initial vector') of the e- 
opening, i.e. the probabilities of occupying the various open states at the instant the 
e-open period begins, depend on the duration of the previous e-shut interval. These 
entry probabilities for each open state, given that the duration of the preceding 
e-shut sojourn was t l ,  will be given by the vectjor 

4~17: .=-+~ = ( b i  " G . F A ( ~ ~ ) / ~ T ,  ( t l) .  (3.7) 

This will be different frorri thc uncondzt~onal (equilibrium) entry probability vector 
( jA  (see equation (2.10)); the difference will he illustrated by numerical examples 
given in 8 6. 

Dependence c?f shut tune on followmg open tune 

Of course one could equally well obtain the distribution of the apparent shut-time 
conditional on the length of the opening that follows it. This sort of dlstribution was 
used (see, for example, I\/lcManus & Magleby 1989) to check on the reversibility of 
the mechanisms that underlie experimental observations. The mechanism used for 
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Figurc 3. Illustration of consecutive apparcnt sojourns. An opc11 sojourn of duration 11  is 
followed by a shut sojourrl of duration 12 

illustration in 5 6 is reversible, but when events are missed it is possible that it could 
nevertheless appear to be irreversible. Srodzinski (1994) found that there could be 
small differences betweeri distributions of apparent open tirries that are conditional 
on preceding shut time and those conditional on following shut time. However, these 
were restricted to the fourth significant figure in her examples, and would therefore 
be impossible to detect in experiments, and they are too small to be seen on the 
graphs in figures 8 and 9. No consistent differences betweeri open times that followed 
or preceded specified shut tirries could be observed in the experiments of McManus 
& Magleby (1989). 

The conditional density in this case is given by 

f ~ ,  lT"(tllt2) = f ~ , , T & l ,  t2)/ffi(t2). (3.8) 

In this case the asymptotic distribution has again the form (2.31) but with kF corri- 
ponents, instead of kA, the relative areas of which are given by 

where the ?i are now the time constants, arid FRj the corresponding matrices, for 
the asymptotic form of FR(l~) calculated in a mariner analogol~s to equations (2.28) 
and (2.29), interchanging A and F. Modified areas can be obtained in the same way 
as at the end of 5 2. 

The mean e-shut tirne, conditional on the duration of the e-open time which follows 
it, is given by 

where 

is obtained from a set of equations similar to (3.6), with A and F interchanged. 
The row vector of entry probabilities at the start of the e-shut period, conditional 

on the duration of the following e-open period is slightly more corriplicated than 
(3.7). It is given by 

Note that 'T' denotes matrix transpose. 
Similar results can be obtained for the joint distribution of an apparent open tirne, 

TO, arid the apparent shut time, T,, which immediately follows it, as illustrated in 
figure 3. 

The joint rnF is 

f ~ o , ~ ,  (tl , t2) = (PA "GAF(~I)  " G F A ( ~ ) U A .  (3.12) 
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Dependence o j  shut time on preceding open time 

The conditional density of the shut time given the preceding open time is 

The areas for the kF exponenlial components of the asymptotic form of this condi- 
tional distribution are given by 

where the -r, are the time constants for the shut-time distribution as discussed fol- 
lowing equation (3.9). Modified areas can be obtained in the same way as at the end 
of $2. 

The mean apparent shut time, following an apparent open time of length t l ,  is 
given by 

The entry probabilities for each shut state to begin an e-shut sojourn, given that 
the length of the preceding e-open time was t l ,  will be given by the vector 

Depen,den,ce of open, time on, followin,g shut time 

Similarly, the conditional density of the e-open time given the following e-shut 
time is 

~ T ~ ~ T , . ( ~ I  lt2) = ffi.7:. ( t l ,  t:!)/fyC (h). (3.17) 

For this conditional distribution the areas for the kA exponential components of 
the asymptotic form (2.31) are given by 

where 7, are the time constants for the open-time distribution, as given by (2.29). 
Modified areas can be obtained in the same way as at the end of 5 2. 

The mean e-open time, for open times that precede an e-slut time of length tZ ,  is 
given by 

d 
E(TolTc = h) = f + $a [ - z A ~ * ( c 5 ) ]  QAF ~xP(QFF<) ' G F A ( ~ z ) ~ A / . ~ T ~  (h). 

h=O 
(3.19) 

The row vector of entry probabilities at the start of an e-open period, conditional 
on the duration of the following e-shut period, is given by 

Open-open paws 

It may also be useful to consider the joint distribution of successive apparent open 
times, separated by a single apparent shut time. The probability density function for 
this is 

f ~ ~ T ~ ' ( t l ,  t2) = $A 'GA3(tl) 'GFA 'GA3( t2 )~3 .  (3.21) 

Other distributions can be formulated in a similar way. For example, it could be of 
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interest to consider the joirit tlerisity of successive apparent shut tirries, separated by a 
single apparent operi tirnc, or the joint tlistrihutioris of intcrvals separated by several 
intermediate intervals. However, tlic dcpendcnce fdls off fairly rapidly sntl, more 
particul;irly, it does not add any new information. All the information is containet1 
in tlic joint distriljution of iiciglibonring i1iterv;ils (Iktlliiri e t  al. 1985). 

Dependcn,cy plot 

It was suggested by Msglcby X: Song (1992) that the joint tlistribution of an operi 
time ;ind the following shut time coultl ljc tlisplayctl most clearly in a norrn;ilized form 
wliich they c;illctl a dcpcndcn,cy plot. Tlicy tlcfinc dependency  ss the (iiormslizetl) 
tlificrcrice hctwceri tlic actual frequency of particular opcll-sllut tirne pairs, arid the 
frequency tlist would he expected if openings and sliuttirigs were indcpcndcnt. Dcfiric 
f;,(t,,) and is(&) ;is the uncontlitional probability tlerisity functions for open tirries 
mt l  sliut times, respectively, arid f(t,,, L,) as the two-dimcnsion~~l distriljutioii. If 
tlicrc wcrc no correlations tllcii the two-t1imeiision;tl tlistrihutiori woultl simply he 
tlic product of tlic scpsrstc distributions, f,,(4,)JS(2,). Tlills tlepcntlency, d(L,,, 2,) is 
tlefinetl as 

Tlic bivariatc distribntioii, ;is in (3.1), is given by 

and tlic two uncoiitlitiollsl tlistributions fbr operi ant1 shut times, respectively, arc, 
is above, 

f ( L )  = (/)A ( 'GAF(~,)UF, f ( L s )  = &F ('GFA (L)uA. (3.24) 

This will be zero for iritleperitlent intervals, a i d  a value of +0.5 woultl indicate tlist 
there arc 50% more ohservctl intcrval-pairs than woultl hc cxpcctctl in the case of 
indepcntlcnt acijaccnt intcrvals. An example is sliown later in figurc 10. h tlescriptiori 
of how to calculate the plot from cxpcriniciitsl valucs is given by Msglcljy & Song 
(1992). 

4. Distributions conditional on a range of adjacent interval lengths 

Depcndcnce oJ' open, lirne on, preceding shul-lim,e rnngc 

It is possihle to  gain a good deal of insiglit into mcclianisms by inspcctiori of tlic 
tlistribution of operi tirncs cont1ition;il on the adjacent shut tirne, arid of tllc shape of 
the plot of nlcsri open time against atljacent shut tirnc. It was sliown in the preceding 
section how tlicsc nxty be c;ilc~~l;itcd from a specified Q matrix. But these quantities 
are of little or no value for comparison with experirne1it;il results. Tllc difficulty is 
that all the observed values of tlic preceding shut time, t l ,  will 1x2 different, so the 
best oric can do is to look at a. histogram of r-open tirric (L2) values contlitional or1 
tlic preceding shut tirne, 2 1 ,  being in a spccifictl mnge, say tl,, to  Lkl i  (Blatz & fvfagleljy 
1989) (sec figurc 3.1). 'L'lms we need the coiit1itioii;il probability density 

In ortlcr to  evaluate this distribution, wc first tlefine A ~ ( u )  as a cumulstivc version 



of *R(II,), i.e. 

A~ (U) = lU -~R(v)  (b. 

An cxact solutiori for this cp;mtity, wliich, ss  before, we sliall use for O < u < 21, 
can 1)c written ss 

k [ U / < ]  m 

*K(.) = l E ~ ( - I ) " ' c , ~ , , ~ , ( u  - rn<; X,), 
i--l m--() 7 . ~ 0  

(4.2) 

where I' is essentially an iricornplctc Gamma furictiori (ant1 is therefore related to a 
cumnlstivc Poissori distribution) tlefined as 

Iri these results, the X,, are the k cigcrivalucs of -Q (see 2.19), ant1 the C,,,,,. matrices 
were tlefinetl in (2.23). 111 the surrlrrlatiori, [.U/<] represents the integer part of ,U/<, 

so for 0 < ,II, < E the sum is for rn = O orily ant1 SO irivolves C,iOO only, whereas for 
< < ,II, < 2E the sum extends over rn = 0 ,  1 am1 i~ivolvcs CiOO, Ci10 arid C,L11. 

For longer tirnes, u > 2<, we use tllc asymptotic spproxirnatiori for *R(u) (see fj 2) 
to  calculate *K(II,) as 

(4.4) 
wllcrc tllc first term, *K(2<), represents the value of *K(II,) at ,II, = 2E calculated 
from the exact form givcri in equations (4.2) arid (4.3). Tlie ri uset1 llcrc arc tlic 
asymptotic time constants for the opcri-time distribution. 

As hefore, exactly sirnilsr expressions for FK(u) can bc fourid 11y interchanging A 
ant1 F in all of these results, and using the appropriate set of time constants 7,. 

Using tllcsc results, we easily obtain the unconditional currlulativc distributions of  
e-open mt l  e-slint tirnes wliich are, respectively. for t > <, 

Of course FT(, (t) = FT< (t) = O fbr all t < E. 
The conditional tlistribution defined in (4.1) is given by 

.h;, (t21tlo < Tc < t d  = ~ F { ~ K ( ~ I ~ ,  - E) - F ~ ( t ~ l ,  - OI-QFA 
~ X P ( Q A A < )  ( G A F ( ~ ~ ) ~ F / [ ~ T ,  - (tlo)]. (4.6) 

This can be evaluatetl using the cxact forrns for "GAF(t2) wllcri t2  < :3< ; m l  the 
asymptotic form fix larger tirncs. Tllc time corlstants, r,, for the kA exponential 
components of tllc asymptotic form (2.31) for large t2 will, as before, 11c the same as 
those for the uncontlition;d tlistribution of r-open tirnes (sec ji 2). Tlie arcas for each 
of these components will, however, tlcpentl on the range, tl,, to tlli, specified for the 
preceding shut time. These ;mw will 11c giver1 by 
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Motlifietl areas can be ohtairietl in the ssmc way as a t  the entl of 5 2. The pro1j;Jjility 
that ;m apparent opcnirig starts in each of tlic open states (the entry prohahility), 
conditional on it being prccctlctl 1)y a shut time in the specified range, is given hy 
tlic whole 1 X kA vector wliich precedes G A F ( t 2 )  in (4.6), namely 

$F{F~( th i  E) - F ~ ( t l o  - <))&FA CXP(QAAI)/'[F~:. (thi) - FT. (tlo)]. 

A riurncricsl cxsmplc of these prob;hilities is giveri in ji 6 

For graphical display it will be usefill t o  plot this coritlitionsl mcan open time against 
tlic rricsn value, over the range tlo to tkli, of tlic preceding sliut time, Tc, i.e. 

In this result FM(u) is tlcfinctl ss  

'rlic exact solution for this, uset1 fix 0 < u < 21, is 

i=l m=O ~ = 0  
For U > 2E the asymptotic form for FR(u) can bc nscd so 

k: F 

F ~ ( u )  = F ~ ( 2 < )  + CF~ir,[(ri + 2<)e-2c/Tz - (rl + U ) P - ~ / ~ ~ ] ,  (4.1 1) 
i=l 

wkicrc the first term represents FM(u)  cvalustcd a t  u = 2< from the exact form given 
in (4.10). The time constants, r i  , in (4.11) are as for the nnconditional tlistribution 
of e-shut times. In (4.10), Nm(u)  and are as given by (2.22) and (2.23) (for 
m = 0, 1 and r = 0, l), hut replacing A by F. T,,(u) is defined in (4.3). 

Depcndcnce of shut time on following opfmtirne range 

By an exactly similar ;irgurnerit, we can obtain the distribution, analogous with 
that in cquation (3.8), for the tlistribution of the shut time (rl) conditional on the 
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following open time being in the range tl, to th,. The result is 

The arcas for the kF exponential components of the asymptotic distribution, of 
forrn (2.31), arc 

where tlie ri are tlie sarne as the asymptotic tirne constants for the ~mcontlitional 
distribution of e-shut times (see 5 2). Motlificd areas can be obtainetl in the sarne 
way as at the end of 2. 

Mean of the con,ditional distr.ibutiorj 

Tlic rnean of this distribution is obtained similarly to the prcccdirig example, ant1 is 

For graphical display it will be useful to plot this conditional rnean shut time against 
the mean value of the following open tirne, To, over the range 11, to tk,,, i.e. 

In this result *M(u) is defined by direct analogy with the previous definition of 
FM(~j,) given above, using the asymptotic time constants fix open times. 

Dependence of shut t ime on preceding open-tirnc range 

As in 5 3, we can carry out similar calculations to those above for the case when 
;I. sliut time follows an open time. E'or the sake of completcncss, we list the results 
without further explanation. 

Thus we need the conditional probability density 

Tliis can be evaluated using the exact fbrms for GyA( t2)  when t2 < 3[ and tlic 
asymptotic fbrm for larger times. The time constants, %, for the kF cxponcntid 
comporicnts of the asymptotic forrn (2.31) for large t2 will, ss before, be the same as 
those for other tlistributions of e-shut times. The areas for each of these componcrits 
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will be giveri by 

fvfotlificd areas car1 he ohtairictl in the same way as a t  the end of 5 2 
The rncsn of this distribution is given hy 

It will he useful to plot this conditional mc;m shut time against the mean value, over 
the range tl,, to  tlli, of the prccctlirig opcri time, i.e. E(To Itl,, < To < tlli) ss  given in 
equation (4.15) . 

Dependence of open time on, follouiing sh~~t-tim,e range 

Similarly, we c;m obtain the coritlitional tlcrisity 

. f ~ ~ ( t l l t ~ o  < 7:. < ttli) = 4s~ " ~ A F ( t l ) { ~ ~ ( t h i  - E) - FK(tlo - <))&FA 

X 'W)(QAAE)UA/[FT, (thi) FT, (tlo)]. (4.19) 

'l'lic areas for the kA exponential cornponerits of the asymptotic tlistribntiori, of 
form (2.31), arc 

ai - $A CXP(QFF<)~; { F ~ ( t ~ , i  E)  F ~ ( t ~ o  E)  )QFA 

X CXP(QAAE)UFI[$;; (tlli) - FT,. (tlo)] (4.20) 

wlicrc the 7, arc the ssrnc s s  the asymptotic tirnc constants for other tlistributioris of 
c-open tirncs. hhlifietl areas can bc obtainet1 in the same way as a t  the cntl of ji 2. 

'rhc mean of this distributiori is 

X - 0 - F ~ ( t ~ o  - E))QFA 
X ~xP(QAA<)uA/[FT, (till) - FT, ( ~ I o ) ] .  (4.21) 

This may usefully be plotted against the mean value of the following shut tirnc, 'I: , 
over the range tlo to tll,, i.e. E(7: Itl,, < 7: < tk,,) as giveri by equation (4.9). 

5. Maximum likelihood fitting 

Convenlional fifling 

Up to now, the fitting of a kinetic rnodcl to  cxpcrirncrit;d results has usually been 
done in a rather liaphazsrd way. For cxarnplc, Colclulioun 8L Sakmsriri (1985) fitted 
separately the distributions of obscrved open tiriies, shut tirncs, burst lcngths, ri~mlher 
of openings per burst ant1 total open time per burst. Approxirnatc corrections for 
rriissctl events were riiatle rctrospcctivoly, arid an attcrnpt rnatlc to find a rneckisnisrii, 
arid thc rstcs for thc rncchanism, that wol~ltl predict with reason;J)lc accuracy thc 
various types of observation. Thcrc are several problems with this sort of approach. 
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Figure 4. A sequence of alternating apparent open sojourns and apparent shut sojourns. 

First, the different types of distribution contain overlapping types of inforrnation, and 
no way is known to combine the inforrriation from each type. Second, the correction 
for missed events is, at best, approxirriate. And third, the analysis ignores entirely 
the irlforrriation from correlations between operi arid shut times. The idea of fitting a 
mechariisrri directly to an entire sequence of operi arid shut times was first proposed 
by Horn & Lange (1983). At that time there were no good corrections for missed 
events, so the likelihood of the sequence could not be computed accurately. More 
recently Sine et al. (1990) used an approximation to the distribution of observed 
results to calculate the likelihood of a sequence of openings and shuttings, arid used 
this for fitting. 

Suppose that we have a series of ohserved operi arid shut times which alternate 
as shown in figure 4. The converltional maxirriurri likelihood fit of the apparent operi 
tirries (see Colquholm & Sigworth, 1995) would be done as follows. For open times we 
have observed values of f,,l, . . . . The parameters to be estirriated are the time 
coristarits xi, arid their associated areas ai ,  for the coriveritior~al multiexponential rnrp 
in (5.2) (these parameters are, of course, mostly related very indirectly to the actual 
rate coristarits in the underlying rriechanisrri). The likelihood, 1 , of a particular set 
of parameters, i.e. the probability (density) of observing tol and tO2 and tO3 and . . . 
given a particular set of parameters, can be taken as the product of the probability 
densities for each opening (this is not strictly correct if successive operi tirries are 
correlated, hut it is usually done anyway), i.e. 

where 
k~ 

f ( r )  = C ai(l /xi)  ~ x p ( - t / ~ , ) .  
;=l 

In practice, it is usual to find the log-likelihood, L, 

by adding the log[f (t)] values. 
In order to fit the mechanism directly to the observations, the parameters to be 

estimated would not be the t h e  coristarits and areas of exponentials, hut rather 
they would be the actual rate constants in the rriechanisrri, i.e. the elerrierits of the Q 
matrix. If, in addition, we allow for missed events, then the probability densities in 
(5.1) could be fourid as specified in (2.14), rather than using the form in (5.2). Thus 
the likelihood to he rnaxirriizetl when fitting the distribution of observed open times 
would he 

This, however, is unlikely to work well, because the riurriber of pararrietcrs will alrriost 
certainly be too large to be defined by the open times alone. 
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It is far better to fit operi arid shut times sirriidtarleol~sly so information from both 
is ta,ken into account. In the case where there is orily one channel contributing to the 
ol~served record tliis can he done very elegantly now that missed events can be taken 
irito account at the time of fitting (it was riot possible when corrections for missed 
events could be rriade orily retrospectively). We sirnply calculate the likelihood as 
the probability (density) of the whole observed sequence, riarriely 

The parameters in Q are adjusted to rriaxirnize this likelihood. 'This riot only takes 
irito account Both open aritl shut times but also takes into account their sequence: 
if there are correlations between operi arid shut times, as there are for nicotinic arid 
NMDA receptors, then there will he information in the sequence aritl this method ex- 
ploits it. Notice that .tbA is a (1 X kA) vector that gives the probability that an opening 
stark in each of the open states at equilibrium (fonrid as in (2.10))) arid the first two 
factors in (5.5), ( 3 ~  'GAF(tol) again form a (1 X k F )  vector that gives the probability 
that the riext shut period starts in each of the shut states following an operiirig of 
length tel. Similarly the first three factors in (5.5), rbA 'GAF(tOl) 'GFA(tsl), again 
form a (l X kA) vector that gives the probability that the riext opening starts in 
each of the open states following an opening of length fzOL arid a shutting of length 
tSl, arid so on, right up to the end of the data recortl. 

Note that, in this approach, no distributioris at all are fitted. The likelihood in (5.5) 
is maximized directly. However, in order to judge how well the estimates so produced 
can describe the observations, distributions should be displayed after the fitting has 
been done. The observations would be plotted as histograms in the usual way, arid on 
each histogram woidtl be superirriposed the theoretical distribution, calculated from 
the estimate of Q ohtairied during the fitting process, as exemplified in Ej 6. If the 
fittirig was successfid there shoi~ltl be good agreement between the histogram and 
the calculated tlistribntiori. The curves may well not fit as well as those obtained by 
coriveritiorial fitting methods, because the calculated tlistrihutiorls are coristrairied 
by the fact that they all derive from a corrirriori Q rnatrix. Conventional separate 
fits to, for exarriple, open times arid shut times, lack tliis constraint (i.e. there is no 
reason why the separate fits should be corripatible with the same meclianisrri), so the 
coriveritiorial fits may appear to be better. 

Even with the method just described, there will often riot he enough iriforrnatiori 
in a single record for reasonable estimates to be made of all the rate constants in the 
mechanism. This problem may he solved by fitting several tlifkrcnt sorts of record 
siinultarieol~sly (see below), hut if this is not possible tl~eri it may be riecessary to 
fix some of the parameters to values that are either plausible guesses or, hcttcr, 
haw been estimated from separate experiments. The riurnt)er of parameters to be 
estirriatctl rnay also be reduced by coristrairiirig the ratio of two parameters; for 
exarriple the association rate constant for a second biridirig reaction might plausibly 
be constrained to be half of that for the first bintlirig (see example in 8 6). 

A virtue of the method tlefir~cti by (5.5) is that it is easy to fit several dif-fcrent 
data sets simultaneously. For exarriple, single-charincl records obtained at several 
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different agonist concentrations may be cornhined, in order to increase the amount of 
information that is available about the parameters. Still better, steady-state results, 
with likelihoods calculated from (5.5), rriiglit be corribined with non-stationary single- 
channel data (e.g. concentration jumps or voltage jumps). The relevant theory for 
single channels afier a jump, with allowance for missed events, is given by Merlushkin 
& IIawkes (1995) and Colquhoun el, al. (1997). In each case we simply find the log- 
likelihood, L = log(l), for each data set, denoted LI ,  L2,  L:<, etc., arid rrlaxirrlize the 
overall log-likelihood 

L = L1 + L 2 + L 3  +. . . .  (5.6) 

What to do if the whole record is not from one charmel 

The method specified in (5.5) cari he used when all the open and shut times that are 
predicted by the model are contained in the observations. However, it is quite corn- 
rrlori for steady-state single-channel records to be obtained from membrane patches 
that contain an unknown number of channels. It would he possible to  generalize the 
theory given here for a patch that contained N channels, but it is debatable whether 
this would he worth while because in most cases N is urikriowri arid cannot be esti- 
mated from the data with ariy accuracy (see, for exarnple, discussion in Colquhoun 
& Hawkes 1995a, p. 431). 

The problem of having an lmknown number of channels in the patch has usually 
been solved in the past by concentrating on sections of the record that, almost cer- 
tainly, originate from one individual channel. For example, Sakrriarin et al. (1980) 
pointed out that the clusters of openings, often seen at medium and high agonist con- 
centrations are separated by long desensitized periods, and the openings within each 
cluster alrriost certainly come from orie individual channel. At low agonist concentra- 
tions when activations are rare, it is impossible to  know whether consecutive openings 
are from the same channel or riot (and therefore impossible to  know whether the shut 
time between the openings c m  be predicted by the model or not). Nevertheless it is 
usual that we cari say that some sections of the record are all from orie channel. For 
example Colquhoun & Sakmann (1985) exploited the fact that all the (1-10 or so) 
openings in a burst (single activation) of the nicotinic receptor were alrriost certainly 
from the same channel. The shut times within sudi bursts cari he predicted by the 
model. We can, therefore, use a modified version of the fitting method above if we 
can define a critical gap length, say, such that we cari be virtually sure that 
all openings separated by gaps shorter than this originate from the same channel. 
Sequences of openings and shuttings defined in this way will he referred to as groups, 
arid all the openings and shuttings within a group cari be fitted by calculating a 
likelihood as in (5.5). Howevcr, the initial and final vectors used in (5.5), which were 
appropriate for a record a t  equilibrium, are no longer appropriate in this case. The 
shut time that precedes the first opening in a group is not known precisely, bul, it 
is known to be {jreater than t.si,. The probability that the first opening in a group 
begins in open statc i (statc 1 or 2 in example (6.1) in the next section) must take 
account of this knowledge, rather than supposing (as the equilibrium (/,A used above 
does) that it could be ariy length. Likewise, the shutting that follows the last opening 
of a group is known to be longer than tCrit, though how much longer is unsure. We 
thus can define a likelihood for the r t h  group, with n openings in it, as 

where the initial arid final vectors, ( / ,h  and eF, are now those appropriate to the 

I ' M  Tmm. R. SOC. Lond. A (1996) 



specified tCrll vi~111e. These can he defined, not by the method of defining bursts in 
terms of a subset of short-lived shut states (as in Colqullol~rl & IIawkes 1982), but 
directly from the specified t , I l l  value. Thils the (/cF X 1) colurrin vector at the end 
does not have all entries = l(uF) as in (5.5), but is 

where 
.cc 

H F A =  J ('GFA (t) dt. (5.9) 
f<I i i  

This simply specifies that afier the last opening of the group one of the shut states 
is entered and tlie channel remains within the slrilit (F) states for any tirrie fi.orn t.,il, 
to  m, before everitidly reopening. This result can he evallmted, by use of (2.13), 
(2.28) and (2.29) (exchsnging A and F) ss 

where the ri refer to tlie tirrie constants for the ssyrriptotic shut tirrie tiistribntion. 
The first open interval of a, group is adso known to follow a, shut time of a t  least 

t,.Iil,. If that previous shut time had started in state i ,  the initial vector for a group, 
c/,!,, could be foimtl by taking the it11 row of HFA ancl scaling it sum to  unity. In 
practice it usually makes little difference which row is used because, after a long 
time (and tCrit is large), the system is iriserisitive to  initial conditions (all postulated 
rrlechanisrris are supposed ergodic). If in doubt, a sensible choice would be to average 
the rows by the entry probability vector rbF, see (2.11), to give 

Orice tCrit is specified tlie observed record can be divided up in N groups and 
the log-likelihooti for each group, L,.,, car1 be calculated from (5.7). The final log- 
likelihood, which is to  he rnaxirnized, is then the s i m  of tlie log-likelihoods for each 
group. 

L L ZJI + L2 + L3 + . . .  + L,v, (5.12) 

6. Numerical examples 

If? for exarnple, there is orily one open state or orily one shut state, then apparent 
open and s h t  times are inutliallv irldeperlderlt random variables (see Colqihonn 
X: FIawkes (1987) for t ic tds) .  In this case the joint tlistributiori of operi a.riti shut 
times is simply the product of the separate open arid shut time densities. In order to  
illustrate the results given ahove we therefore need a rriechariisrn with a.t least two 
open statcs and at least two shut states. For thc: purposes of illustrating the results 
we shall use a mecllanisrn, tlisclissetl in Colquholm & IIawkes (1982) a.nd FIawkes et  
al. (1992), which has two open anti three slriut states. Two agoriist molecules (A) can 
hind to tlie shut (R) conforrna.tiori, anti either singly or tioul)ly occupied charirlels 
rnxy operi (R,*). The scherric is illustrated tliagr;-r.lnlna.tically in (Ci.l), each state being 
nnlnl)eretl, and 1a.helleti as either sluit (set F) or operi (set A). 
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state 
rlurnl)t,r 

.F (5) R 

( 1 2  

The matrix of rate constants is shown in (6.2): 

I [ -(a1 + k.; ,.I*) k; 2.1A 0 a 1 1 

PI 0 k 1 . 2 ~ ~  -([jl + k.( 2 2 ~  + k k1 
5 ' 1  0 O 2k+1 X* -2k+12* 

(6.2) 
where is the agonist concentration. The particular values for the transition ratcs 
that are used for the examples here are shown in (6.3), which is shown partitioned 
according to whether states are open or shut. The transition rates are all in units of 

P s l ,  arid correspond to  (6.2) with a concentration .I* = 0.1 pM: 

QAA QAF 
Q =  Q Q..] - 

This model is similar to that inferred by Colyuhourl & Sakrriariri (1985) as a de- 
scription of sllheryltliclioline--activated ion charmels in the fkog muscle endplate. Low 
agonist corlcerltratioris were used so the resting state (5) has a long mean lifetime 
(100 rns) and channel sctivations are well-separa.tetl (by 3789 ms on average). The 
channel sctiva,tions occur in lnirsts which consist prt:dorriinantly of several 'long' 
openings separated by brief shuttings. The 'long openings' i~sually represent a sin- 
gle sojourn in statc 2 (A2R*) (mean life - 2 rns), since direct transitions between 
the two open states (1 to 2) are rare. The brief shuttings within a burst consist, 
mainly of single sojourns in state 3 (A21t, the tlouhly ligaadetl hut shut state with 
rricari life 1/19000 -- 53 p ) ,  mar1ift:stctl as the large (73% of area) comporlcrlt of 
shut timcs with a time constant of 53 ps. There are also rare longer shuttings within 
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a 1)urst (as shown by the coinporient of t,he shut tirrie tiistrihutiori with time con- 
stant 0.485 ms arid 0.8%) of a,rea, in table 1, anti figure 5h. A few c:haririel sc:tiva,tioiis 
are brief sirigle openings corresponding rrlairily of sirigle sojonrns in state 1 (mean 
life = 1/3050 = 0.328 rns), arid these are riot llsually interrupted by brief c1osln.e~ 
because a, chaairiel that returns from statc 1 (AR.*) to  sta,te 4 (AH.) is rnllcli more 
likely 00 lose it,s agonist rnolcculc ant1 rctlirri to the res1,ing sl,atc (5) tl.ia.11 it is to 
rcopen. 

Experimental ohscrvatioris wcrc sir~illlatcd for h e  plirposcs of ill~istrating the thc- 
oret,ic;tl distrihitioris in $5 1 5, arid for t,est,ing (,he dircct iilaxiiiillrri likelilioocl fit,t,ing 
iiiel,hod. The t,ra.nsition rafes in (,he Q nia1,rix in (6.3) were 11set-l for sinillla1,ions. 
A psc11do-ra.nt3oiri r iui i i l~r  gcilcr;tl,or (Wichirinnn & Hill 1985) was lisctl to protlllcc 
exponentially tlist,ribl~tet-l lifctirnes in ea.cli inclividllal state, arid to t-lecit-le which stat,c 
was cntcrcd next. Oscilla.tioris within the shut st,al,cs (3, 4 a.11t-l 5) werc corlcaterla1,et-l 
into a sirlglc shlll, time, ;tnd similarly for opcn 1,inics. Tkic effecl, of liiriitd time reso- 
ll~tiorl was sini~il;tt,ecl by iniposing ;t fixed tirric rcsollition on t,he  result,^, as t-lescri1xx-l 
by Colquhoun & Sigwor1,l.l ( 1  W5). For tkic plirpose of illusl,ral,ing the fit of thc rcla- 
t,ionships descri1)et-l ahove, 81 920 in1,ervals (40 960 opcn times and 40 960 s h ~ t  times) 
were simlil;tt,ecl wit,li a. rcsolut,ion of 1 11,s. After iniposil,ion of a rcsoluhn of 50 11,s 
h r c  wcrc 22249 appa.rcrit openings; aft,er iniposit,ion of a rcsollitiorl of 100 Ir,s thew 
were 14 712 app;trent openings, ;tnd aftcr imposi1,ion of a rcsolu1,ion of 200 11,s t h r e  
wcrc 10 049 apparcrit openings. 

The t-list,ril)litions [,hat, werc tlcscrilxxl in carlicr sed,ions will be illust,r:tl,ed by show- 
ing t,hc tkicorctical va.llies calc~ila.tecl from (,he cqliations a.hve, with the Q matrix 
in (li.3). In cases wlicre it, is possihlc, the rcslilt will be sliperirrq)osecl on t,he corre- 
spontling distrihit,iori of the sirrilila.1,ct-l ol)servations, t,o sliow t h l ,  1,hc equations (30 
irldectl t-lescribc the effect of lirrii1,et-l 1,iiiic rcsohition. Notc that the ca.lclllated dis- 
tril)~it,ions in figures 5 8 ,  ancl (,he calc~llatecl rricaris iri figllrc 9, kiavc not becn fitted 
t,o t,hc sirnnlat,cd obscrvatiorw, but havc been calclil;tl,et-l from (,he p;tr;tnid,cr vahles 
(6.3) thal, were ~isecl for the siiiiul a .l,' ion. 

Disp lay  of dis t r ibu t ions  

Table l shows (,he 1,iirie cons1,ants ;tnd areas fix opcn-tirrc distributions and shlll, 
1,irnc clistrihition. 7'hc ideal dist,ribul,ion (no cvcnts niisscd) is shown in tkic colurrin 
kicatlctl < = 0 .  The othcr cohirnns show tkic tirric consta.nts ( T )  arid areas ( a )  for the 
cxponentia.1 components of thc asymptotic distributions of apparcnt open and shut 
1,irnes with resolu1,ions of 6 = 50,  100 and 200 p.s, from cqiations (2.31) a.nd (2.32). 
The arcas projcctctl back to t = 0 arc also given; they are t-lenot,ed a' and calclila1,ct-l 
as in (2.34). 

Figure 5 shows the tlistribl~tions of a.ppa.rcnt open tirrie with rcsoll11,ions of < = 50, 
100 and 200 11,s. h each case (,he itlcal tlisl,riIxition (< = 0, appropriately sca.lcd) is 
superimposed as a (lashed line. The cont,inliolis line shows (,he dist,rihution calcllla1,etl 
from (2.14), with the exact form h i n g  llsctl for < < t < 3(, ;tnd the asymptotic forin 
(as given in t,;thle 1) for lorigcr opcn times. ?'he calclllatctl tlistrihlitiori fits tlic sirn- 
~ilat,ed obscrvatiorls closcly in each case. It is clear Srorn figlirc 5 that the proportion 
of *short openings' appears t,o increase as the resohit,ion get,s worse. The reason for 
this is clear from t,;tt)le 1 .  The tiiiic constant (of the asymptotic approxiiiia.tiori) for 
the fas1,cr coiiiporicnt, 0.328 nis, is l.la.rtlly affcctcd hy the rcsol~hon,  because short 



Join,t open-shut dis tr ibut ions 

apparent open time I ms (log scale) 

Figure 5. Distribution of apparent open times, with resolutions ( E )  of ( a )  50 bs, (b) 100 ps 
and ( c )  200 ps. In this figure, and all subsequent figures, histograms are presented to show the 
distribution of log (duration) with a square root transformation of the ordinate (McManus et 
d. 1987; Sigworth & Sine 1987). 'I'hc solid line shows the theoretical distribution, calculated 
from equations (2.24), (2.31) anti (2.32); the exact calculation was used up to 1 = 3<, and the 
asymptotic form was used for larger t .  The time constants and areas for the asymptotic form 
are given in table 1. The histogram shows simulated data, on which the appropriate resolution 
has been imposed (see text,). The dashed line shows the ideal distribution (scaled to have the 
same area above 1 = 6) in which no events are missed. 

openings are rarely irit,erruplcd by short slinttings, so thcrc is rlotllirig to be missed. 
On 1 he other hand, the timc constanl for 'long openings' iricrcascs from 1.997 ms in 
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rrsoluf ion ( bs) < = 0  5  < = l 0 0  < = a 0 0  

t he ideal case t o 8.907 rris with a resoll~tion of 200 11 S. The 'long openings' are of eri 
sepwat ed by short closures, most of which arc. ~mssetl with low resohit ion, so thclre 
app(w lo he f(lwclr, h t  longer , openings. 

The ~ ~ p p a r e n t  s h u t - t i m e  d.istu.l,but.ion, 

Figure li shows thc dist,ril)l~tions of apparent s h ~ t  times, displayed a,s for the open 
t,irnes in figllre 5. Tn strong contrast to the results for open tines, the clist,rib~itions 
are lil,t,le ;tffected by tlie resoll~tion (apart, honi the fict that, shul, tints less t h n  [ 
are obviol~sly missing). This, of course, is a result of the fact that t,hcrc are relativcly 
few short, openings, so even with poor resoll~tion, fcw openings are missctl. Tnsyection 
of tlic rcslll1,s for s h ~ t  timcs in tahlo 1 rcinforccs this coricll~sion. The area, ( L , ,  f i~r 
thc shortest component fdls rapidly hecm~sc of (,he loss of short shuttings, hut when 
projcctctl 1)a.ck to t = 0 (sec cqlla.l,ion (2.33)) (,he va.111cs of a: are secri 1,o change 
littlc from the valllc of 73% sccri wit,li perfect, resolution, fbr resoll~tions of 50 ant1 
100 11,s. There is only ;t slight lengthening of tlie longest component of shut t ines as 
thc resolu1,ion gck  worse, arid the intermccliate ant1 sllorl, componcnt,~ change little 
down t,o a resolution of 100 11,s. At h e  really poor resoll~tion of [ = 200 11,s (at which 
97.8% of the shorl,-compo11c1it shutl,irigs are t,oo short t,o be tietectd), (,he va.111cs in 
table l suggest that T arid (L: are affected. However, inspcctiorl of figure 6c shows t,h;tt 
cvcri with a 200 11,s resolul,ion, thc shu,-t,irne tlist,rihul,ion is nol, much tlisl,ort,ecl. Iri 
1,llis case tlic figures in t,;tble 1 arc r~iisle;ttlirig, hcca.l~se tllc asympl,ol,ic approxirna.tion 
1)ccornes poor for short l,imes, as shown in figure 7. 

The rcsl~lt in fig1nc 7n shows t , l~ t t  (,he a.synipt,otic open-hne clisl,ril)ut,ion fits vcry 



Joint operl- shut distributions 

apparent shut time / rns (log scale)z 

Figure 6. Distribution of apparent shut times, with resolutions of ( a )  50 ps, ( b )  100 ps and 
( c )  200 11,s. 'rhe solid line shows the t,hcoret,ical tlistrihution; the exact calculation was uscd up 
to t = 36, and the asymptotic form was uscd for larger t .  'The time const,ants and areas for 
the asymptotic form are given in table l. The histogram shows s indated data, on which t,hc 
appropriate resolution has been imposed (see text). The (lashed line shows the ideal distribution 
(scaled to have t,hc same area above t = E )  in which no events arc missed. 

well riglit down to  t = <; thcrc is hardly any ricctl for the exact solutiori in this 
case. However, the curves in figure 76 show that, wlicri the rcsolutiori is very poor 
(< = 200 p", tllc asyrnptotie approximatiori for shut times becornes iriaccurate below 
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approximation 

exact distribution 

0.0 1 0. I I 10 

T ( m )  area (%I) 
0.0599 64.5 
0.460 1.1 
4447 34.5 

0.0 1 0.1 1 1.0 
apparcnt opcn tirnc / rns 

Figure 7. ( a )  I)istribut,ion of apparent open t,irr~e wit,h poor resolution, E = 200 p. 'rhe solid line 
shows the exact distribution from 1 = 0.2 ms to t = 0.6 ms, and the asymptotic form t,hereaft,er, 
as in figure 5c. The hist,ogram is as in Ggure 5c. 'rhe dashecl line shows the asymptotic forn~,  
projected back to 1 = 0. In this case the asymptotic form describes the data well over the whole 
range. (b) Distribution of apparent shut time with poor re~olut~ion, E = 200 1~s. 'l'he solid line 
and histograrn arc as in figure 6c, except that the distribution is shown only up to 1 = 10 ms, 
for clarity. 'rhe tlashed line shows t,he asyn~ptot~ic form, projected back to t = 0. In this case the 
asyrrlptotic forrn is a good approxirrlation only for t > 0.3 ms. (c). Empirical fit of a mixture 
of three cxponcr~t,ials to sirnulatcd shut data with a resolution of200 ps, as shown in Ggure 6c. 
The fit was done by the conventional maximum likelihood method (see Colyuhoun & Sigwort,h 
1995). All values were included in the fit, but the result is shown here only up to 10 nls, to 
facilit,atc comparison with ( h ) .  'rhe values for the fitted parameters are shown in t,he box. 



t = 2<, though the cxact distribution still fits the data well (ant1 it is close to  tllc 
itlcal tlistril-~ution, as sllowri in figure 6 ~ ) .  In figure 7, tllc asymptotic distrit~utions 
are ~xojcctcd t~ack to t = 0, though of course their derivation is t~asecl only on large 
t values, so the poor fit hclow t -- 2< is riot entirely surprising. Below 600 ps (S<) 
the cxact distribution has been used to  calculate the shut time clistril~iitiori, ant1 this 
exact distribution is not a siiriplc nillltiexporlcrltial. Neverthclcss, it is intcrcstirig 
to see what happens when tllc sinmlated shut times with < = 200 ps, as shown in 
figiirc 6c arid 76, arc fitted over the whole range with a mixture of three exponcntials, 
l~ccausc this is what would usually he done with real data. The rcsiilt of doirig this is 
shown, for the shorter slliit tirncs, in figure 7c. Not surprisingly, a good fit is ol-)tainetl 
with tllrcc cxponentials, and the fastcst shut time cornponcrit has a time constant 
of 59.9 ps. Even in this extrelnc casc, thc fitted time constants do riot differ grossly 
from the itlcal casc (7 = 52.Ci 11)s for the fastcst coniponerit). 

The results in figures 5-7 show why tllc simple correction for missed events that was 
eniployetl by Colqullouri X: Sakniariri (1985) workcd quite well. Tllc fact that the slliit 
tiinc distrit~ution (unlike tllc opcri-time distritnltion) is relatively little distorted by 
rnissccl cvcrits allows a fit like that shown in figure 7c to hc projected tmck to t = 0 to  
otkairi a rcasonaldy acciiratc estimate of the rliirrlhcr arid duration of hricf shuttings 
that have t)eeri missed. With this cstirnate, arid the assiiinption that most missed 
shuttings occur adjacent to  long openings (as siiggcstcd by the data), a reasorialdy 
accurate retrospectivc correction can he made. 

Open time distr.iDwtzon c o d o  on adjacent shut-time r,n,ge 

In order to cornpare a tlleorctical clistrit)iitiori with experirncntal values, it is nec- 
essary to  look at tllc distrihtion of open times that arc adjacent to slliit tiirics in a 
spccificd rmqe of values (equations (4.1) and (4.19)), rather than those adjacent to  
an exactly spccificd slliit tirrlc (equations (3.2) ant1 (3.17)). The graphs in figure 8 
show examples of such contlitiord opcri-tirne distrit~utions. Tllc calculated clistrihu- 
tiori provides a good fit to  the histogram of sirrlulated ot)servations in cach case. In 
figures 8n, c the distritnltiori of apparent open times that arc ac?jacerit to short shut- 
tirlgs arc shown (for rcsoliitions of 50 arid 200 p,s, respcctivcly). In each case tllcrc is 
a deficiency of short openings, ant1 an cxccss of lorig openings, corrlparcd with the 
uricoriditiorial distritmtion (which is shown as a clashccl line in figure 8; it is what is 
plotted as a solid line in figlire 5). Figures 8b, cl show the tlistrihiitioris of apparent 
open times (for rcsoliitiorls of 50 ant1 200 p,s, respectively) that are atl.jaccrit to lorig 
shut tinics (any shut tiinc longer tlriari 10 nis). The rcsiilts with < = 50 ps (figure 80) 
show an excess of short openings, and a dcficicricy of lorig openings ncxt to  long 
shut tirncs, hut at the very poor rcsolutiori of 200 11)s (figure 8 4 ,  this cffcct is t~arely 
visil-~le. 

As nieritioried at~ove, the time constants for the (asymptotic) coriditiorial tlistril~u- 
tiorls of opcri tinic arc exactly thc same as those for the ~mconclitional distrit~ution. 
For cxaniplc, with a rcsolutiori of 50 11,s these are 0.3281 rrls and 3.887 rns, arid the 
(rnotlificd) arcas for each of thcsc arc 0.131 arid 0.869 (see table l). The changcd 
appearance of the corlditiorial distritnltion is entirely a result of the tlcpcndcncc of 
the entry prol-xhilities for each open state on the lerigtll of the adjacent shut times, 
arid the consequent change in the relative (asyrnptotic) areas associatctl with cach 
time constant. In thc casc wherc tllc rcsoliition is 50 II~S,  thc cqiiilihriiirn protxhility 
that an apparcrit opcning starts in open statc 1 (AB.*) is 0.1187, arid for state 2 
(A2Ra) it is 0.8813; these are the elenierit's of (bA which were defined in (2.10). For 
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Joint, open-shut distributions 

adjacent shut timc (mean) 

Figure 9. Dcperldcrice ol the mean open timc on the adjacent shut, time, for a resolutiorl ol 
= 50 p s  The theoretical relatioilship, from eqllat.iorls (3.4) and (3.19), is sllowrl as the cllrve 

labelled 'cont.irnious' (the curves for prcccdirlg shut timc arid followirlg shut time supcrirnposc). 
The seven shut-tirnc ranges that, wcw llsed for comparison of the reslllts with sirnlllatetl data, 
t.oget.llcr wit.11 the riumbcr ( I L )  of apparent openings that were acqacent, to shutt ing in each 
range, were as lollows: 0.05 0.1 rrls (71, = 13928); 0.1 0.2 rrls (71, = 8106); 0.2 1 Ins (11, = 1766); 
1 30 Ins (71, = 198), 30 300 rns (11, =: 1352), 300-3000 ms (71, = 9360), and longer t.llan 3000 ms 
(71, = 9786). The rncarls of the apparent open times arc plotted as filled diamonds (joined by 
tlott.ed lines), with error bars t h t  indicate the standard deviation of the rrlcarl (in each range 
the standard deviation ol the open times is sirrlilar to its mean, so t . 1 ~  difrercrlces in the size ol 
the error bars are rrlairily a reflection of the riumhcr ol shut, times in each range). The mean open 
timcs are plotted against, t . 1 ~  mearl ol all shllt, timcs in the corrcsporldirig range. The calculated 
values (frorrl cquatioris (4.8) and (4.21), which are sliperirnposetl) are plotted as llollow circles 
(joiricd by straight, lines). 

apparent, open times), and the asymptotic areas for the fast arid slow corrlporierits are 
0.269 arid 0.731 (cornp;tretl with 0.131 ;tnd 0.869 for the imcoriditiorial distribution). 

These coritlitiorial distributions show clearly the negative correlation between the 
lcrigth of an opening and the length of an adjacent shut time (this holds equally for 
the preceding shut time and the following shut, tirne). This correlation can also be 
seen, in a different form, in the graphs in figures 9 and 10. 

Deperldenc-e oJ' rnmn open time on adjacent shut tim,e 

The correlat,ion that was ilhistratcd in figure 8, is also apparent, when we plot, the 
rrleari lcngt,h of an opening against the length of an atljacent shut tirnc. The thco- 
retical relationship, from equations (3.4) and (3.19), is shown as the clirvc labelled 
'continuous' in figure 9 (the curves for preceding shut time arid followirlg shut time 
superimpose). It has quite a subtle shape that sholild he uscfid for discrimination 
between possible rncchanisrns. llowever, the extent to which it can he cornpared with 
experimental observations is limited because, as is clear from figure 6, there are few 
shut timcs between 0.5 arid 100 ms in length in this particular case. Again, for com- 
parison with observations, it is necessary to use a range of atljacent, shut t,irnes, ;tnd 
the nlcari value of open times t,ll;tt, are ;tdjacent to shut 1,irncs in a specified range 
can be folirltl from equations (4.8) arid (4.21). These c;tlculated v;tlues arc shown, for 
seven different shut,-time ranges, as hollow circles (joined by straight lines, labelled 
'calculat,etl') in figure 9. They ;Ire plotted against the nlean of the shut times in the 
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Figllrc 10. The calculated deperidcrlcy plot with allowar~cc [or missed events, as defirictl in 
equation (3.22) is sllown, for the mechanis~rl in (6.1)-(6.3). The calclllations were for a rcsollltion 
of 50 PS. The axes extend from 50 p,s t.o 50 ms for the apparent, open time, and frorr~ 50 1r.s to 
500 ms for the apparent shut time. The tlcficicricy of short openings ac!jaccrit to short sllut times 
is shown by the depression at  the hont corner o f  the graph, while tllc elevation at the right-hand 
corner shows the excess of short openings ac!jaccnt to long shut, times. 

corresponding shut,-time range. The corresponding values for t,he observations are 
sliowri as filled diarrmntls (joined by dott,ctl straight lines) in figure 9. The agrcc- 
merit between the simul;tt,ed observations mt l  the calcu1;tted values is good, given 
the relatively srrlall rilirrlbcr of slmt tirrlcs in sonic of the ranges. 

Deper1,derlq plot 

Tlic depcndcncy plot with allowarice for missed events (as defined in cqua- 
t,ion (3.22)) is shown in figure 10, for the rrlcchariisrrl in (6.1) (6.3). It is plot,tcd 
for rcsult,~ with a resolutiori of 50 11,s. It shows the deficiency of long openings aclja- 
cent t,o short, sliut,t,ings (and converscly) in an attractive tlircc-dirnc~isional manner. 
IIowevcr, it is necessary to lime a large riurriber of observatioris to produce the equiva- 
lent, diagram from cxpcrimcrit,;tl  result,^, especially in a case like tlie present for which 
some shut,-time dur;ttions occur only rarely in tlie data. Wlieri the dcpcridency plot 
is drawn for obscrvatioris with lower resolution, the main effed, (in tliis cxarnplc a t  
least) is to cut off tlie part, of the graph for short times without, having ;t drmiatic 
effect on the rest of t,he graph. 

Some  e~arn,plr:s 0/' dzrect mazimwm likelih,ood jittir1,g 

The dircd, maximurn likelihood rnetliod tlcscrihctl in 5 has been tested using 
simulated observat,ions. Fix tliis purpose a record was gcner;ttcd with 5120 open 
times, 5120 shut times ant1 a resolution of 50 ILS. Tlic likelihood is tlcfiricd in (5.5), 
or, in the case where more tliari oric cliarmcl is present, by (5.7) (5.12). The likcli- 
hood was maximized by a Sirnplex rnctliod. The tirnc takcri for convergence tlepends 
cnorrnously on the number of parameters, the riurnbcr of observations mt l  on tlic 
quality of the initial guesses; on a fast PC it may take a few minut,es or lip t,o a11 
hour or more. In each case the quality of the fit, would be judged, aft,er t,hc fitting 
was cornplet,cd, by using the cs t imatd  parameters (Q matrix) t,o const,rlict plots of 
the sort, exerrlplified above. 
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Table 2. Some exarnples of fitting for simulated data cor~sistiny oJ' 5120 open times and 5120 
shut times, with a resolution oJ' 50 p, i n  the case where it  is assumed that only one channel 
cor~tributes to the data 
(Corwtrairletl values arc dcrmtctl with t .  111 each case the pararrleter 2kT2 is dctcrrr~inetl hom 
the others by the rr~icroscopic revwsiluility (MR)  corwtrairlt, so it is not cstirr~ated separately. 
The log(likcli11ootl) valnes for the initial gucsscs, and the final rr~axirrlisctl values are given at  
the bottorr~ [or each fit.) 

fit 1 fit 2 fit 3 

true i i l  final initial final initial final 

jxxarr~ctcr llnits value guess cstirrmtc guess estimate gllcss esl,imat,c 

Table 2 shows some examples of fits in cases wlicrc tlic opcriings were assurncd to  
originate from one channel only, using different initial guesses for the pararnctcrs. 
Attempts to  fit all the pararnctcrs (other than that tleterrniricd by microscopic re- 
versibility) usu;tlly led to  vahies of k;, arid kz2 that were much too sm;tll (though 
in about the right ratio). Transitions between A2R and A2R* arc probably too rare 
for there to  be r m h  inforrnation about their frequencies in the data. IIowevcr, if 
we constr;tiri to  be equal to k+, then fitting is successful, though not from all 
initial gucsscs. The fits labelled 'jit 1' and 'fit 2' in table 2 started from very different 
initi;tl guesses, but both give quite reasonable estirnatcs of tlic rate constmts. If, on 
the other hand, the initial glic~is~s for both a, and /& were much too big then both 
of these p;tr;tmeters became even bigger, as illiwtrated in fit 3 (table 2), and the 
cstim;ttcs of the other p;tr;tmeters were poor. This erroneous fit has attcrnpted to  fit 
long opcriings as though they consisted of a series of many short openings arid even 
shorter shuttings. However, this sort of error is unlikely, because the apparent long 
opcn time (table 1 arid figure 5a) is about 4 rns, the reciprocal of which, 250 S - ' ,  

might make a sensible initial glicss for a,; so a glicss of 5000 S-', as used in fit 3, 
would be rather irnp1;uwiblc. In the sirnplcst casc of a rncchariism with two states 
only, it has been shown that thcrc arc two tliffcrcnt solutions to  the missed events 
problcrn, one with rnlicli bricfcr opcn and shut tirncs than the other: the beh;tviolir 
of rnorc cornplex rnodcls in this rcspcct is not known, but it is possible that the poor 
fit seen in fit 3 reflects bchaviolir analogoils with the 'fast solution' in the two-state 
casc (sec Colqlihoim & IIawkcs 1995a, p. 455). 



Table 3. Sorne ezarnples oJ'fitting Jor simulated data corrsistirrg oJ 5 120 open tzrnes and 5120 
shut t imes, ,with a ~ e s o h ~ t i o n  oJ' 50 ps, i n  the case w h e ~ e  the r ~ c r n b e ~  of charrrrels i s  rrot kno~nrr 

(111 all cases was t.akc11 as 5 rns. Coristrairicd values are derlotetl with t ,  fixed vallles arc 
dcrlotcd with $. Iri each case the parameter 2k:Yz is deterrnincd frorr~ the others by the rr~icroscopic 
reversihi1it.y (MR) corlstrairit, so it is not estirnat.etl separately. In {.he last, colllrrlri k 2 was 
coristrairicd to be equal to kPl, so only the 1at.t.t.r was cst.irr~atcd.) 

fit 1 fit 2 fit 3 

trlle initial final firial final 

pararr~ctcr u1lit.s value glless estirrlatc cstirrlatc cstirrmtc 

If the sirrlulatcd observations were from a patch that coritairicd an lirikriowri r i i~ r r l -  
bcr of channels, we colild still be sure that openings separated by less tllari about 
5 rrls were alrnost, certainly from the same c1l;tririel: roughly speaking, the 52.6 PS 
cornponerit of sliut times (sec table l), arid the 0.485 rrls corrlponcnt, are 'shut, times 
within a single activation', whereas the 3789 1x1s comporicrit is 'between ;tct,ivations'. 
Table 3 gives sornc cxarnplcs of fits obtained by taking t,.,.it -- 5 1x1s in (5.7)-(5.12). 

The initial gi~css for each of the pararnctcrs is sllowri in colurnri 4 of t,;tble 3. 
In each case the pararrlctcr 2k:* is dctcrrrli~icd frorn tlic otlicrs by the ~nicroscopic 
reversibility constraint, so it is riot cstirrlatcd separately. Tllc firial estimates are 
shown in coli~mns 5-7. I11 the first of tllcsc (fit l) all t,hc pararnctcrs (apart from 
2k:T,) were free to  vary. The cstirrlatcs arc of rrlotlcst quality, arid 2k+, is quite 
wrong: this is to be expected siricc the estimate of t,hc association rate constarit for 
the first, binding st,ep will be deterrnincd to a large cxt,crit by t,hc frequency of channel 
ad,ivat,ioris, arid 1,liis is riot, available when the number of ch;tnnels is unknown. The 
sccorid set of cstirrlatcs (fit 2) was found by fixing all of the ;tssoci;tt,ion ratc coristarits 
a t  1,lieir corred, v;tlues, and the cs1,irnatcs arc sccri to be better. For the the third set 
of est,im;tt,es (fit S), in ;ttldit,iori the value of 2 k 2  was coristrairictl to be twice that 
of k . . I ,  so only the latter was estimated. In this case the estim;tt,es arc quite good. 
It can he coricludcd that the inform;tt,ion in a ste;tdy-st,;tt,e record a t  a single agoriist 
concent,r;tt,ion is insufficient to tlctcrrninc all of the ratc constants in Q when t,hc 
mnnbcr of cllarlrlcls is unknown. IIowever, if some rates (particularly the ;tssociation 
rate const,ants) car1 be supplied in advance, good est,irn;tt,cs of t,lic others can be 
fourd. 
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