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The openings and shuttings of individual ion channel molecules can be modelled in
terms of an underlying Markov process with discrete states in continuous time. In
practice, some of the open times, and/or shut times, are too short to be detected
reliably, making the durations of some of these intervals appear to be longer than
they really are. Under certain assumptions about how this happens, the probability
densities of these apparent times have previously been obtained. It has been shown
that the ability to distinguish between alternative postulated reaction mechanisms
can be greatly improved by considering bivariate distributions. In this paper we
obtain joint distributions, and hence conditional distributions, of adjacent apparent
open and shut times. Numerical examples illustrate what insight these conditional
distributions may provide about the underlying mechanism. Bivariate distributions
are readily generalized to multivariate distributions which enable the likelihood for
an entire single-channel recording to be computed, and hence efficient maximum
likelihood estimates for the mechanism’s rate constants can be obtained. Numerical
examples of such fitting are given.

1. Introduction

Single channel records always seem to show phenomena that are just too rapid too
be resolved easily, whatever efforts are made to increase the resolution. With present
techniques, an opening of the ion channel that is shorter than about 25 ps will not be
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detectable, even in the best records, given the noise in the recording. The resolution
is usually considerably worse than this, to an extent that depends on the signal-to-
noise ratio of the recording and on the method used for its analysis (see Colquhoun &
Sigworth (1995) for details). Events (openings or shuttings) of the channel that have
a duration much shorter than the resolution will not be detected, and the results
will therefore be distorted to an extent that can be quite serious in cases of practical
interest.

In this paper we address the problem of obtaining joint and conditional distri-
butions of the adjacent apparent open and shut times that are recorded when brief
events are missed, and their use for direct maximum likelihood fitting of entire data
records. This is an important problem, because Fredkin et al. (1985) showed that,
when the data show correlations, it is not possible to extract all the information from
the experimental record by examination of only the univariate distributions (e.g. of
open times, or of shut times), but it is necessary also to exploit bivariate distributions
(e.g. that of open time and adjacent shut time). It was subsequently demonstrated
very clearly by Magleby and co-workers that the ability to distinguish between al-
ternative postulated reaction mechanisms can be greatly improved by exploitation
of the correlational information contained in bivariate distributions (McManus et
al. 1985; Blatz & Magleby 1989; Magleby & Weiss 1990b; Magleby & Song 1992).
Although some of the relevant information can be recovered by measuring correla-
tion coefficients (e.g. between the length of one opening and the length of the next
opening) (Fredkin et al. 1985; Colquhoun & Sakmann 1985; Colquhoun & Hawkes
1987), the graphical displays are generally preferable. For example, one can plot the
mean open time conditional on the length of the adjacent shut time (see, for example,
Blatz & Magleby 1989; Gibb & Colquhoun 1992). These bivariate and conditional
distributions can be predicted, on the basis of any postulated mechanism, for com-
parison with experimental data, but in order for these methods to be useful with real
experimental data, they need to be extended to allow for limited ability to detect
brief events; that is the purpose of this paper. Once such distributions have been
obtained the door is opened to doing direct maximum likelihood fits of a reaction
mechanism to experimental data (see Sine et al. 1990), and we shall also discuss this
problem.

At this point it is worth noting that it is quite possible for observations to ex-
hibit correlations when in fact the underlying channel mechanism predicts that there
should be none. The fact that time resolution is limited can itself produce spuri-
ous correlations under some circumstances (Srodzinski 1994; Colquhoun & Hawkes
1995a, p. 461). This fact provides another good reason for making correct allowance
for missed events when analysing real data. Another hazard arises from the fact that
it is also possible for spurious correlations to arise if the recording is made from a
heterogeneous population of channels.

The definition of an apparent open time used here, and in most other work on the
subject, is as follows. If a fixed dead-time £ is agsumed then an apparent opening is
defined as starting with an opening of duration of at least £ followed by any number
of openings and shuttings, all the shut times being shorter than &; the apparent
opening ends when a shut time longer than £ occurs. A similar definition is used for
apparent shut times. Open times defined in this way will be referred to as e-open
times (extended openings). This definition should give a good approximation to the
values that are measured from an experimental record in most cases (though this is,
to some extent, dependent on what method is used for measuring the record).
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Several approximate methods have been described for coping with this ‘missed
event’ problem (see, for example, Roux & Sauvé 1955; Blatz & Magleby 1986; Yeo
et al. 1988; Crouzy & Sigworth 1990). Ball & Sansom (1988a) obtained the distribu-
tion of apparent openings and shuttings in terms of Laplace transforms. The exact
probability density was found by Hawkes et al. (1990) and very accurate asymptotic
forms were obtained by Jalali & Hawkes (1992a, b) and further discussed in Hawkes
et al. (1992).

It is supposed in what follows that all events that are shorter than some fixed
resolution or dead-time (denoted &) are not detected, while all events that are longer
than & are detected and measured accurately. The resolution is usually not well
defined, so it must be imposed retrospectively on the measurements by, for example,
concatenating any observed shut time below £ with the open times on each side of
it to produce one long ‘apparent opening’ (Colquhoun & Sigworth 1995). This will
happen automatically with very short shut times which will not be observed anyway.
Short openings are similarly treated to obtain ‘apparent shut times’.

Although the expressions that are derived here are obviously more complicated
than in the ideal (¢ = 0) case, their numerical evaluation requires no new techniques
(see Colquhoun & Hawkes (1995b) for an introduction).

2. Notation and basic results

The principles and notation are those employed by Hawkes et al. (1990, 1992). The
underlying system is modelled by a finite-state Markov process, X (¢), in continuous
time; X (f) = 4 denotes the system is in state ¢ at time ¢. The rate constants for
transitions between states i and j (¢ # j) are the elements, ¢;;, of the transition rate
matrix Q, and the diagonal elements, ¢;;, are defined so that the rows sum to zero.

The ideal case

If the k states of the system are divided into subset A containing the open states,
k.4 in number, and subset F containing the shut states, kr in number, so k4 +kr = k,
then the @ matrix may be partitioned as

Qua Qur
= . 2.1
© l Qra Qrr } 24

A semi-Markov process (for an elementary introduction see, for example, Cox &
Miller 1965, ch. 9) is embedded in the process at the instants at which the system
enters the set A or F. The intervals between these points have probability densities
given by the matrix

0 exp(Qaal)Qar 1 _ (2.2)

Gi) = { exp(Qrrt)Qra 0

Thus each event is, alternately, the beginning of an open period or the beginning
of a closed period. The elements, g;;(t), of the top right-hand corner of this matrix
give the probability density for staying within the open states (set A) for a time ¢
and then leaving for shut state j, conditional on starting in open state i (see, for
details, Colquhoun & Hawkes 1982). The Laplace transform of this matrix will be
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denoted by

2.3
G als) 0 23

G*(S): [ 0 GjAf(‘S):i’

where

Gir(s) = (sI ~ Qaa)'Qar, Giu(s)=(sI - Qrr) 'Qra. (2.4)

The Markov chain embedded at these open-shut transition points, ignoring the
duration of the intervals between them, has transition probability matrix

G:[ 0 GAf}, (2.5)
Gry 0

where

Gar — / Gar(t) df = G r(0) = —Q 7L Qurs
0

Gra= / Gra(t)dt = G5 4(0) = ~Q55QFr 4. (2.6)
0

Thus, for example, G 4 has elements that give the probability of leaving the set of
open states for shut state j, conditional on starting in open state i, regardless of how
long it takes for this transition to occur.

Colquhoun & Hawkes (1982), using the above results as a starting point, went on
to study the dynamics of opening and shutting in some detail.

The case of limited time resolution

To modify the above ideas so as to describe the apparent open and shut times,
allowing for the omission of short intervals as described in the previous section, we
follow Ball & Sansom (1988a) by considering a semi-Markov process, the events of
which occur at time £ after the start of observed open or closed periods. An event
type (open or shut) will be the state of the underlying Markov process, X (t), which
is occupied at that time. The durations of the intervals between events, which we
call e~open and e-closed intervals, are, according to the previous definition, the same
as the durations of the observed, or apparent, open and closed intervals, because we
have taken the same & to detect both open and closed periods. The only difference
therefore is that the whole process is shifted back by a constant £. This makes the
theory somewhat easier, because at the event times so defined we know whether
there is an apparent open time or apparent shut time in progress. The theory can be
done directly in terms of the apparent intervals, but it is not quite so elegant. These
definitions are illustrated in figure 1.

Intervals of this process will be alternately e-open and e-closed, so the transition
densities, analogous with those in (2.3), will be given by a matrix of the form

0 Gar(t) }

Gralt) 0 27

G(t) = [

with Laplace transform

Fals) 0

@G*(s)z[ 0 (Gi‘f(s)}. (2.8)
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apparent open time !

open

shut - - - -———1 L

|
f

N

e-open interval
3 3
% |
excess e-open interval

Figure 1. Illustration of the definition of apparent open time which contains two short shut times
(of duration less than &£). The e-open time is defined to start at time ¢ after the start of the
apparent time, and end time & after it finishes, and is thus the same length.

The Markov chain embedded at the event points (the times at which events occur)

has transition matrix
0 ‘G
G = e (2.9)
‘Gra 0

As in equations (2.5), (2.6), we simplify the notation when setting s = 0 in a Laplace
transform by omitting the ‘«” and the argument: for example, in this case ‘G »(0)
is written as “G 7. As above, this gives probabilities for transitions from apparently
open to apparently shut states regardless of when the transition occurs.

The equilibrium vector

The distribution of e-open times that will be obtained later requires that we specify
the probability that an e-opening starts in each of the open (set A) states. The
vector, ¢ 4, containing these probabilities can be found, for a record at equilibrium,
as follows. By looking only at alternate events, and ignoring the interval durations,
we have a Markov chain on the A states with transition matrix ‘G 47 “G x4, and an
equilibrium probability vector, ¢ 4, that satisfies

A=A Gur Gra, daus=1, (2.10)

where u_4 is a vector, the elements of which, k4 in number, are all unity. Once we
have a method for evaluating ‘G 4+ and G x4, this equation can be solved for ¢4
using one of the methods described by Colquhoun & Hawkes (1995b) for obtaining the
equilibrium state occupancies from the @ matrix (the equation for which is similar
to (2.10)).

Similarly, a Markov chain at the closed events has transition matrix ‘Gr4 ‘Gar
with equilibrium vector

b = da Gar. (2.11)

Distribution of e-open lifetimes

We will discuss the probability density function of e-open times; the distribution
of e-closed times can be obtained simply by interchanging A and F in the results.
Let “R(u) be a matrix, the ijth element (i, j € A) of which is

AR;;(u) = P[X(u) = j and no shut time is detected over (0,u)|X(0) =], (2.12)

where a detectable shut time is a sojourn in F of duration greater than &. This is a
kind of reliability or survivor function: it gives the probability that an e-open time,
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starting in state 4, has not yet finished after time w and is currently in state j. Then
the transition density is given by

Gar(t) = “R(t — )Qarexp(Qrst), t =&, (2.13)

because, for the c-open interval to end at time ¢, there must be a transition from A
to F at time t — £ (with no detectable sojourn in F up to that time), followed by a
sojourn of at least & in . The probability density of observed open times is given
by

fr(t) = b4 Gar(t)ur = g4 "R(t — £)Qar exp(Qrré)ur, t=§, (2.14)

where ur i8 a vector, the elements of which, k7 in number, are all unity. Examples
of distributions of observed open and shut times, with various resolutions, are given
later (figures 5 and 6).

The distribution of e-open times covers the range t = £ to oo because, by definition,
any e-open time, Ty say, must exceed € in duration. Therefore, for these two densities,
and all others subsequently quoted in this paper (except (2.15)), we take it as implicit
that the density is zero for ¢t < £. It may sometimes be more convenient to consider
the excess time Uy = Ty — £, which ranges from 0 to co. We will call this the excess
c-open interval (see figure 1). Then the probability density fr, (t) = fu, (t — &) and so

fuo (W) = fr,(u+€) = ¢4 Gar(u+Eur = pa*R(u)Quar exp(Qrré)ur. (2.15)

The problem of evaluating this distribution of apparent open times, and the other

distributions derived here, reduces to the problem of evaluating the survivor function,

AR(u), and its analogue for apparent shut times 7R(u). This will be described next.
Ezact evaluation of the survivor function “R(u)

Hawkes et al. (1990) show that the Laplace transform of “R(u) can be written as

AR (s) = {1 — G (9)S 5 r(8) G ()} ™ (5] — Qua)™, (2.16)

where S5 (s) is defined by the equation

3
/ e T exp(Qrrt)dt = {I —exp(—(sI — Qrr)&)}(sI — Qrr) "

| — ()]~ Q) (217)

When multiplied by Q £ 4, this is just the Laplace transform of the shut time densities
for shut times that are shorter than £, which are the elements of

exp(Qrrt)Qra(1 — H(t — &),

where H(t) is a unit step function. Thus the expression

Gor(5)Srr(5)Grals) = Gur(s)Llexp(Qrrt)Qrall — H(t — &)
(where £ denotes a Laplace transform) convolves openings (of any length) with shut
times that are less than £.

Equation (2.16) was given by Ball & Sansom (1988a), using different notation.

Substituting (2.17) into (2.16), and using (2.4) yields the alternative expression
83
R(s) = s — Qua - QAf(/
0
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When the resolution is perfect, & = 0, then S%,(s) = 0, “R(u) = exp(Q aau), and
all the results reduce to those given by Colquhoun & Hawkes (1982).

Hawkes et al. (1990) inverted the Laplace transform in (2.16), and hence obtained
an exact solution for the rpF, fr, (t). The solution has a different form for each of
the intervals t =0 — &, t = £ — 2&, ete. The solutions are not, as in the ideal case,
mixtures of k 4 exponentials, but they are products of polynomials in ¢ {of degree that
increases for each successive interval) and exponentials; furthermore, the exponential
terms involve not the k4 eigenvalues of Q 44, but the k eigenvalues of 3. However,
the precision of the asymptotic solution (see below) is such that the exact solution
need be calculated only for the first three intervals, and for these the exact solution is
relatively simple. We therefore give below the exact results for apparent open times
in the ranges t =0 - £, t = £ — 2¢€ and t = 2¢ — 3¢, which turn out to be adequate
in practice.

The starting point is the representation of the matrix @ in terms of the spectral
matrices A; (see, for example, Colquhoun & Hawkes 1982}, so that, assuming the
matrix —@} has distinct eigenvalues A,

k
exp(Qt) = Z A; exp(—N\;t). (2.19)
i1
Let A; 47 be the AF partition of A;, and define
D; = Aiar exp(Qrr&)Qra. (2.20)
Then “R(u) is given by
AR (1) = Nyl(u), 0<u <,
(u) = No(u) ; (2.21)
= No(u) = Ni(u—§), §{<u<,
where
k k
N()(U) = Z Ci[)() exp(—)\,;u), N’[ (U) = Z(Cilo + C’Mlu) exp(—/\m), (222)
i=1 i=1

and the matrices Cj,,, are given recursively by
Cioo = Ajaa, Cio = Z(DiCjUO + D,;Ci00)/(Aj — Ni), Cinn = D;Cipp. (2.23)
J#i
Thus the pPDF of the apparent open times, defined in (2.14), can be written as
fr () =0, 0<t<€
=fot=¢), £<t<2
= folt = &) — fult = 26), 26<1<3E,

where
k
Jo(u) = Z Yioo €xp(—Aiw), (2.24)
i=1
k
filu) = L(%‘lo + Yirru) exp(—Aiu),
i==1
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and the constants y;,,, are given by

Yimr = (;bACim,rQA]: eXp(fof)uf-
We use the first two intervals, 0 < u < £ and £ < u < 2¢, in (2.21) because, from
(2.13) and (2.14), the functions fy,(t) and ‘G 4+ (t) depend on “R(t — &). Hawkes
et al. (1990) do give further exact results for v > 2¢, and hence ¢t > 3¢, but the
following approximation is preferred.

Approzimate evaluation of the survivor function “R(u) for large u

For values of apparent open time ¢ > 3¢ we shall use, in place of the exact solution,
an asymptotic form which has been found in practice to be very accurate (even for
smaller values of ¢ than this, in some cases). From equation (2.18) we see that the
asymptotic behaviour of “R(u) depends on the values of s which render singular the
matrix W(s) defined as

W(s) =sI — H(s), (2.25)

where

H(s) = Qua+ Qar(sI — Qrr) [T — exp(—(sI — Qrr)E|Qra, (2.26)

provided s is not an eigenvalue of Qxx so that (sI — Qzx) ! exists. In other words,
we are interested in the roots of the determinantal equation

det[W (s)] = 0. (2.27)

Models of ion channels are normally assumed to obey the principle of microscopic
reversibility, in the absence of external energy supply (see Colquhoun & Hawkes 1982,
pp. 24 25). Under these conditions, Jalali & Hawkes (1992b) proved that det W (s) =
0 has exactly k4 real roots, denoted s;. If these are distinct, then, as u — oo,

koa
“R(u) ~ Y ARe (2.28)
t=1
where
T = —1/517 ARj = erj/riW/(Si)cl’, (229)

and ¢;, r; are the right and left (column and row) eigenvectors of H (s;) corresponding
to the root s;, which is also an eigenvalue of H (s;).
The matrix derivative in the above results can be evaluated as

W(s) = I+ QurlSir ()T — Qrr) ' — €I — Spr()|Grals),  (230)

where 8% (s) and G% 4(s) are defined in equations (2.17) and (2.4), respectively.
In the special case where there is only one open state and one shut state, Jalali
& Hawkes (1992a) showed that there will also be infinitely many complex conjugate
pairs of roots. However, this is of no interest for the purposes of this paper.
One consequence of these results is that, from quation (2.14), we can represent
the asymptotic probability density of the e-open times in the form

Fro®) = 3 a1 /) exp(—(t — €))7, (2.31)

i=1
where the constants, a;, are given by
A .
a; = Tipa "R Q ar exp(Qrrl)us. (2.32)
Phil. Trans. R. Soc. Lond. A (1996)
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It should be noted that this approximation refers to large ¢, not the whole distribution
from t = £ — oo. However, if you do think of it as applying over the whole range from
t =& - 00, the density being zero for 0 < ¢ < £, the a; can be thought of as areas.
There is no reason why they should add up to exactly 1, though they are usually
quite close (see examples in Hawkes et al. (1992) and table 1 here). The beauty of
this result is that it has exactly the same form, a mixture of k4 exponentials, that
is found in the case of perfect resolution (to which it reduces when £ = 0). The
time constants, 7; for the exponentials are, of course, different when brief events are
missed.

Similar results can be obtained for apparent shut times, by simply interchanging
the roles of A and F in the above equations, to obtain “R(u) and hence Gz 4(t)
and the corresponding probability density fr, (t).

Comparing observed and theoretical distributions: modified areas

It should be emphasized that the form (2.31) applies for ‘large’ ¢ and does not, in
general, give good results for ¢ < 3¢ (although sometimes it does). It has, however,
got the merit that it is a mixture of exponential distributions, and so can be compared
directly with the ideal (£ = 0) distribution, or with the multiexponential distribution
which would commonly be fitted to experimental results (see Colquhoun & Sigworth
1995). Such comparisons, strictly speaking, are not necessary, because the exact
distribution (e.g. equation (2.14) for observed open times) can be fitted, or, better,
the whole of the data fitted simultaneously, as discussed in §5. Nevertheless, this
sort of comparison is often convenient. The time constants can be compared directly,
but the areas associated with each time constant can not, because the asymptotic
distribution in (2.31), like the exact distribution, has zero probability for ¢ < &.
Before the comparison can be made, the asymptotic distribution must be projected
back to t = 0, and this is achieved by assuming that equation (2.31) applies for all
t > 0 and rescaling it so that the total area is unity. The adjusted distribution of
apparent open times then takes the form

fn(t) = Zaé(l/n) exp(—t/7;), t=0. (2.33)

The factors e&/7 have been incorporated into modified areas, af, defined from
t=0— o0 as
o = a;et’™ [La;et/ ™, (2.34)
where a; were defined in (2.32), and the denominator serves to normalize the modified
areas so that they add up to unity exactly.
Such an adjustment, in effect, is an attempt to correct for missing short open times
(but it does not correct for the effect on apparent observed open times of missing

short shut times). Examples of the use of such modified areas are given in §6 (see
also Hawkes et al. 1992).

3. Joint and conditional probability densities for adjacent intervals

A number of authors have considered the correlation between successive open or
shut intervals, with or without allowing for time interval omission (see, for exam-
ple, Fredkin et al. 1985; Colquhoun & Hawkes 1977; Ball & Sansom 1988b; Ball et
al. 1988). However, correlation coeflicients tend to be relatively uninformative, and
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open - - - -~ ——

shut b -

Figurce 2. Nlustration of consecutive apparent sojourns. A shut sojourn of duration 1 is
followed by an open sojourn of duration t,.

restricted in the range of values which can be achieved, when the marginal distri-
butions have an exponential form (see, for example, Downton 1970). The full joint
distributions or conditional distributions will usually be more useful (see §1).
Consider two consecutive intervals, for example, a shut time of duration #; followed
an open time of duration g, as illustrated in figure 2.
The joint distribution of an apparent shut time (e-shut time), 7%, and the apparent
open time, Ty, which immediately follows it, is given by

Jrom () = oF Gralty) Gar(t)ur. (3.1)

Dependence of open time on preceding shut time

A convenient way to study the association between the two random variables
without having to use three-dimensional graphs is to use conditional densities; for
example, the distribution of the apparent open time, conditional on the apparent
shut time that precedes it, is given by

fror.(taltr) = from (b1, t2)/ o (B1). (3.2)

These distributions are easily computed from any specified mechanism (i.e. from the
Q matrix) by means of the results given in the previous section. The exact forms
of “R(u) and “R(u) should be used for small values of u (in practice it has been
found adequate to use the exact form for u less than 2€), and the asymptotic forms for
larger values. The result in (3.2) implies that, just as in the ideal case, the conditional
distribution has exactly the same k4 time constants, 7;, for the asymptotic forms
(as found in equation (2.29)) as for the unconditional density (equation (2.31)). The
dependence of open time on adjacent shut time is manifested in the different areas
for each of these components in the conditional and unconditional distributions. For
the conditional distribution, (3.2), the areas for the k4 exponential components of
the asymptotic form (still given by (2.31)) are given by

a; = Ti¢r Gralty) "RiQuar exp(Qrr&ur/ fr.(hh). (3.3)

These areas depend, of course, on the length, ¢;, of the preceding shut time on
which the distribution is conditioned. Modified areas can, if required, be obtained in
exactly the same way as for the unconditional distribution (see the discussion at the
end of §2).

The predicted agreement between the time constants of the conditional and un-
conditional distributions was observed in analyses of experimental data by Blatz &
Magleby (1989), Weiss & Magleby (1989), McManus & Magleby (1989) and Gibb
& Colquhoun (1992). These authors show that the shape of the conditional distri-
bution depends only on changes in the area associated with each time constant, as
predicted by the theory given here; they plot the area of each component against £,
which is a useful way to represent the dependence. Examples of such plots are given
by Srodzinski (1994).
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Mean of the conditional distribution

The mean apparent open time, for open times that follow an apparent shut time
of length ¢, is defined as

E(TVIT, = 1)) = / to froi, (faltr) dt. (3.4)
J0

A plot of this mean open time against ¢, is a useful way to represent the dependence
(see figure 9).

The mean can be found by differentiating the Laplace transform of (3.2), changing
the sign and setting s = 0. This gives an (exact) expression for the mean as follows:

E(L|T. =t1) =&+ dr Gralty) {’(%AR*(S)} Qur exp(Qrr&)usr/ fr.(t1),

$=0
(3.5)
where
. d Ay . —1l/y—2 V*l iv* X V*’l —1
ds (s) = Vi Q. A | ds a(s) 4 Quaa
E 5=0 - s=0
in which
Vils)=1- GZ?(S)S}}"(g)G}A(S)v (3.6)

and

d_ . . .
{EVA(S)] = QUG ArSrrGra — GarSrrQ55Gra
- s=0
~§G ax exp(Qrr§)Gra.

A similar expression will hold for

[—adng*(s)] L

Initial vector for an e-opening
The dependence of the e-open time on the duration of the previous e-shut time
results entirely from the fact that the entry probabilities (or ‘initial vector’) of the e-
opening, i.e. the probabilities of occupying the various open states at the instant the
e-open period begins, depend on the duration of the previous e-shut interval. These
entry probabilities for each open state, given that the duration of the preceding
e-shut sojourn was t1, will be given by the vector

A=, = bF Gralti)/ fr.(t)- (3.7)

This will be different from the unconditional (equilibrium) entry probability vector
b4 (see equation (2.10)); the difference will be illustrated by numerical examples
given in §6.
Dependence of shut time on following open time
Of course one could equally well obtain the distribution of the apparent shut-time
conditional on the length of the opening that follows it. This sort of distribution was

used (see, for example, McManus & Magleby 1989) to check on the reversibility of
the mechanisms that underlie experimental observations. The mechanism used for
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open .
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Figure 3. Ilustration of consecutive apparent sojourns. An open sojourn of duration ¢y is
followed by a shut sojourn of duration {,.

illustration in §6 is reversible, but when events are missed it is possible that it could
nevertheless appear to be irreversible. Srodzinski (1994) found that there could be
small differences between distributions of apparent open times that are conditional
on preceding shut time and those conditional on following shut time. However, these
were restricted to the fourth significant figure in her examples, and would therefore
be impossible to detect in experiments, and they are too small to be seen on the
graphs in figures 8 and 9. No consistent differences between open times that followed
or preceded specified shut times could be observed in the experiments of McManus
& Magleby (1989).
The conditional density in this case is given by

frm (tilte) = from, (81, t2)/ fr, (F2). (3.8)

In this case the asymptotic distribution has again the form (2.31) but with kr com-
ponents, instead of k4, the relative areas of which are given by

a; = 707 "R;Qraexp(Qanl) ‘Gar(t)ur/ fr,(ta), (3.9)

where the 7; are now the time constants, and 7R, the corresponding matrices, for
the asymptotic form of “R(u) calculated in a manner analogous to equations (2.28)
and (2.29), interchanging A and F. Modified areas can be obtained in the same way
as at the end of §2.

The mean e-shut time, conditional on the duration of the e-open time which follows
it, is given by

E(T Ty = ty) =&+ ¢r {—ifR*(S)] Qraexp(Qanl) Gar(ta)ur/ fr,(t2),

ds s
(3.10)
where

is obtained from a set of equations similar to (3.6), with A and F interchanged.

The row vector of entry probabilities at the start of the e-shut period, conditional
on the duration of the following e-open period is slightly more complicated than
(3.7). Tt is given by

brity=t, = [diag(bx) ‘Gra ‘Gar(t2)ur]"/ fr,(ta). (3.11)

Note that ‘T’ denotes matrix transpose.

Similar results can be obtained for the joint distribution of an apparent open time,
Ty, and the apparent shut time, T,, which immediately follows it, as illustrated in
figure 3.

The joint pDF is

from (1, t2) = o4 Gar(t) Gralta)ua. (3.12)
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Dependence of shut time on preceding open time

The conditional density of the shut time given the preceding open time is

frome(talts) = fr, 1. (1, t2)/ fry (t1)- (3.13)

The areas for the kr exponential components of the asymptotic form of this condi-
tional distribution are given by

a; = Tip 4 ‘Gar(t)) TRiQr a exp(Qanl)ua/ fr,(t1), (3.14)

where the 7; are the time constants for the shut-time distribution as discussed fol-
lowing equation (3.9). Modified areas can be obtained in the same way as at the end
of §2.

The mean apparent shut time, following an apparent open time of length #;, is
given by

E(T Ty =t1) = £+ ¢4 Gar(ly) [—%fR*(S)] Qraexp(Qanl)ua/ fr,(t1).

s=0
(3.15)
The entry probabilities for each shut state to begin an e-shut sojourn, given that
the length of the preceding e-open time was t1, will be given by the vector

OFITy=ts = P4 Gar(t1)/ fr,(t1). (3.16)

Dependence of open time on following shut time

Similarly, the conditional density of the e-open time given the following e-shut
time is

Jror (tlt2) = Sy (b1, 82)/ fr.(t2). (3.17)
For this conditional distribution the areas for the k4 exponential components of
the asymptotic form (2.31) are given by

a; = Tip.4 "RiQar exp(Qrr€) ‘Gra(ta)ua/ fr.(t2), (3.18)

where 7, are the time constants for the open-time distribution, as given by (2.29).
Modified areas can be obtained in the same way as at the end of §2.

The mean e-open time, for open times that precede an e-shut time of length 4, is
given by

EI|T. =t) =&+ da [“E‘AR*(S)] Qar exp(Qr7E) Gra(t)ua/ fr.(ts).

ds
(3.19)
The row vector of entry probabilities at the start of an e-open period, conditional
on the duration of the following e-shut period, is given by

¢A|TC:L2 = [diag(gbA) Gar erA(t2)uA}T/fTC (tz) (3'20)

Open—open pairs
It may also be useful to consider the joint distribution of successive apparent open
times, separated by a single apparent shut time. The probability density function for
this is

Frorer (1, t2) = ¢4 Gar(t) Gra‘Gar(tz)ur. (3.21)
Other distributions can be formulated in a similar way. For example, it could be of
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interest to consider the joint density of successive apparent shut times, separated by a
single apparent open time, or the joint distributions of intervals separated by scveral
intermediate intervals. However, the dependence falls off fairly rapidly and, morc
particularly, it does not add any new information. All the information is contained
in the joint distribution of neighbouring intervals (Fredkin et al. 1985).

Dependency plot

It was suggested by Magleby & Song (1992) that the joint distribution of an open
time and the following shut time could be displayed most clearly in a normalized form
which they called a dependency plot. They define dependency as the (normalized)
difference between the actual frequency of particular open-shut time pairs, and the
frequency that would be expected if openings and shuttings were independent. Define
folts) and fy(4) as the unconditional probability density functions for open times
and shut times, respectively, and f(¢,,%,) as the two-dimensional distribution. If
there were no correlations then the two-dimensional distribution would simply be
the product of the separate distributions, f.(t,) fi(ts). Thus dependency, d(t,, L) is

defined as
f(to, /’s) - fo(io)fs(//s) )

d(to, bs) = =~ 3.22
N RONTACN (3:22)

The bivariate distribution, as in (3.1), is given by
f(tm tS) = (/SA GGA]-"(%) CGFA (to)u,ch (3.23)

and the two unconditional distributions for open and shut times, respectively, are,
as above,

f(to) = da Gar(to)ur, f(ts) = dor Gralli)ua. (3.24)
This will be zcro for independent intervals, and a value of +0.5 would indicate that
there are 50% more observed interval-pairs than would be expected in the case of
independent adjacent intervals. An example is shown later in figure 10. A description

of how to calculate the plot from experimental values is given by Magleby & Song
(1992).

4. Distributions conditional on a range of adjacent interval lengths

Dependence of open time on preceding shut-time range

[t is possible to gain a good deal of insight into mechanisms by inspection of the
distribution of open times conditional on the adjacent shut time, and of the shape of
the plot of mean open time against adjacent shut time. It was shown in the preceding
scction how these may be calculated from a specified @@ matrix. But these quantitics
are of little or no value for comparison with experimental results. The difficulty is
that all the observed values of the preceding shut time, ¢, will be different, so the
best one can do is to look at a histogram of e-open time (f2) values conditional on
the preceding shut time, t1, being in a specified range, say t), to t,; (Blatz & Magleby
1989) (scc figure 3.1). Thus we necd the conditional probability density

thi thi
fT()('/,Q"/,lo < 71. < thi) = |: ch,Tg(tlatZ) (1/1}/ f’l’c(tl) dtl} . (4_[)
Y to LT

[n order to evaluate this distribution, we first define K (u) as a cumulative version
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of “R(u), i.e.
AK (u) = / AR(v) dw.

Jo
An exact solution for this quantity, which, as before, we shall use for 0 < u < 2¢,

can be written as
k [w/€] m

AK (W) =YY D ()" Climp L(u — m; \y), (4.2)
i=1 m=0 r=0
where I' is cssentially an incomplete Gamma function (and is therefore related to a
cumulative Poisson distribution) defined as

Io(uy A) = / e dy = [1 — Zc"\“‘(x\iu)j/j!} /NN A0,

70 7=0

(4.3)
=u"/(r+1), X\ =0.

In these results, the A, are the k cigenvalucs of —Q (see 2.19), and the Cj,,,, matrices
were defined in (2.23). In the summation, [u/g] represents the integer part of u/é,
so for 0 < u < £ the sum is for m = 0 only and so involves Cjog only, whereas for
& < u < 2 the sum extends over m = 0,1 and involves Cjyg, Ci1g and Cyy.

For longer times, u > 2¢, we use the asymptotic approximation for “R(u) (scc §2)
to calculate AK (u) as

L kA
AK (u) = AK(26) + / “R(v)dv ~ K (20) + Y ARimi(e /™ — o7/, > 2,

2 i=1

gk

(4.4)
where the first term, 4K (2€), represents the value of AK (u) at u = 2¢ calculated
from the exact form given in equations (4.2) and (4.3). The 7; used here are the
asymptotic time constants for the open-time distribution.

As before, exactly similar expressions for 7K (u) can be found by interchanging A
and F in all of these results, and using the appropriate set of time constants 7.

Using these results, we casily obtain the unconditional cumulative distributions of
e-open and e-shut times which are, respectively. for ¢ > £,

Fa, (t) = g K (1 = §)Qr exp(QrrE)us, }
Fr.(t) = ¢r 7K (t — £)Qraexp(Qaaf)ua.
Of course Frp,(t) = Fp.(t) = 0 for all t <&,
The conditional distribution defined in (4.1) is given by
fry(talto < Te < tyi) = dr{TK (b — &) ="K (lo — £)}Qra
x exp(Qaal) ‘Guarlta)ur/Fr.(ln) — Fr.(to)].  (4.6)

This can be evaluated using the exact forms for “Gar(t;) when 3 < 3¢ and the
asymptotic form for larger times. The time constants, 7, for the k4 exponential
components of the asymptotic form (2.31) for large ¢, will, as before, be the same as
those for the unconditional distribution of e-open times (sce §2). The arcas for each
of these components will, however, depend on the range, t, to ty;, specified for the
preceding shut time. These areas will be given by

a; = ¢r{"K(hi — &) ="K (to - £)}Qra
x exp(Qaal) T *RiQar cxp(Qrrur/[Fr, (t) — Fr.(to)].  (4.7)
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Modified areas can be obtained in the same way as at the end of §2. The probability
that an apparent opening starts in cach of the open states (the entry probability),
conditional on it being preceded by a shut time in the specified range, is given by
the whole 1 x k4 vector which precedes G 47 (t2) in (4.6), namely

Sr{TK (thi — &) — TK (to — £)}Qr 4 exp(Qa48)/[Fr. (tni) — Fr.(to))-

A numecrical example of these probabilities is given in §6.

Mean of the conditional distribution
The mean of this distribution is given by
E(Tolti, < To < tyy) =&+ ¢r{ Kty — &) ="K (t — £)}Qra
d

< ep(@uaf) |- AR Qurexn(Qerus P () - Fr(tu)l. (45)

For graphical display it will be useful to plot this conditional mean open time against
the mean value, over the range ¢y, to ty,;, of the preceding shut time, Tt i.c.

thi
E(Tc|t10 < TC < thi) - / tlfTC(t]) dtl/P(tlo < Tc < thi)

St
=&+ oMt — &) — "M (t, — £)}Qra
x exp(Quaa§)wa/[Fr. (thi) — Fr, (fo)]- (4.9)
In this result “M (u) is defined as
TM (u) = / v TR(v)dv.
0

The exact solution for this, used for 0 < w < 2¢, is

(u/€] u

TM(u) = Z(~1)m / vIN,, (v —m&)dv
m=0 v0
[u/€] u—mé
= Z / (v +m&) N, (v)dv
m=0
ko [u/f] m

= Z Z Z (=) Chpr[mEL (u —mEA;) + Lo (u — mé; \;)]. (4.10)

i=1 m=0 r=0
For u > 2¢ the asymptotic form for 7R(u) can be used so

kr
TM (u) m "M (26) + Y TR |(7i + 28)e 7T (1 + w)e T, (4.11)
=1
where the first term represents “M (u) evaluated at u = 2€ from the exact form given
in (4.10). The time constants, 7; , in (4.11) are as for the unconditional distribution
of e-shut times. In (4.10), N,,(u) and Cj,,, are as given by (2.22) and (2.23) (for
m =0, 1 and r =0, 1), but replacing A by F. I'.(u) is defined in (4.3).

Dependence of shut time on following open-time range

By an exactly similar argument, we can obtain the distribution, analogous with
that in cquation (3.8), for the distribution of the shut time (7) conditional on the
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following open time being in the range t), to ty;. The result is

fﬂ; (tlitlo <Ty < thi) = ﬁb}‘ eG]—‘A(tl){AI{(thi - 5) - AK(tlo - £)}QAJF
x exp(Qrr&)ur [[Fr,(tw) — Fr, (to)]- (4.12)

The arcas for the kr exponential components of the asymptotic distribution, of
form (2.31), arc

= ¢r "RiQr4 cxp(Qa48) Ti{ K (tni — &) — K (to — £)}Quar
x exp(Q@rré)ur/[Fr,(tn) — Fr,(to)], (4.13)

where the 7; are the same as the asymptotic time constants for the unconditional
distribution of e-shut times (see §2). Modified arcas can be obtained in the same
way as at the end of §2.

Mean of the conditional distribution

The mean of this distribution is obtained similarly to the preceding example, and is

1
E(Tc|tlo < TO < thi) = é: + (/)f li_“(_}—R* (‘S):' Q]:A
5=0

ds
x exp(Qaa8) {*K (tn — &) — K (t, — £)}Qar
x exp(Qrré)ur/[Fr, () — Fr, (ho)]- (4.14)

For graphical display it will be useful to plot this conditional mean shut time against
the mean value of the following open time, Ty, over the range 1, to ty;, i.e.

thi
E(T()'tlo < T() < thi) = / tngo(tg) dtg/P('//lO < Ty < thi)

=&+ pa{" M (ty — &) — M (b, — E)}Qar
x exp(Qrré)ur/[Fr,(tn) — Fr,(to)]. (4.15)

In this result “M(u) is defined by direct analogy with the previous definition of
FM (u) given above, using the asymptotic time constants for open times.

Dependence of shut time on preceding open-time range
As in §3, we can carry out similar calculations to those above for the case when
a shut time follows an open time. For the sake of completeness, we list the results
without further explanation.
Thus we necd the conditional probability density

thi
fT(:(t2|t10 < T() < thi) = [ fjoq (tl,tQ di jl/{:/ fTo il (l/ jl
f/lo to

= QSA{AK(thi - é) - AK(tlo - ‘ )}QAf
< exp(Qrr§) “Gra(tz)ua/[Fr,(tn) — Fr,(ho)]- (4.16)
This can be cvaluated using the exact forms for ‘G r4(t2) when {3 < 3¢ and the
asymptotic form for larger times. The time constants, 7;, for the kz cxponential

componcnts of the asymptotic form (2.31) for large ¢2 will, as before, be the same as
those for other distributions of e-shut times. The arcas for each of these components
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will be given by

a; = A K (t ~ &) — K (t, — €)}Quar
x exp(Qrré) T TR Qra cxp(Qanl)ua/[Fr, (b)) — Fr,(to)].  (4.17)

Modified areas can be obtained in the same way as at the end of §2.
The mean of this distribution is given by

E(I:ltlo < TO < thi) = é + ¢A{AK(thi - 5) - AK(tlo - E)}Q.Af

x exp(QrrE) [‘E;lf *(b)} Qra

8 §==0
x exp(Qaaf)wa/ Fr, (i) — Fr. (ho)]- (4.18)
1t will be uscful to plot this conditional mean shut time against the mean value, over
the range t;, to #y,;, of the preceding open time, i.e. E(Tylt, < Ty < t1;) as given in
cquation (4.15).
Dependence of open time on following shut-time range

Similarly, we can obtain the conditional density
fro(tlte < T < ty) = da Gar(t){7K (th — £) = "K(t, — £)}Qra
x exp(Qaad)ua/ [ Fr,(tn) — Fr.(to)]- (4.19)

The arcas for the k4 exponential components of the asymptotic distribution, of
form (2.31), arc

a; = pa *RiQur xp(Qrr&)mi{ K (ty — &) — "K (i, — £)}Qra

x exp(Qand)ur/[Fr. (i) — Fr.(to)], (4.20)
where the 7; are the same as the asymptotic time constants for other distributions of
e-open times. Modified areas can be obtained in the same way as at the end of §2.

The mean of this distribution is
d 4,
E(Tolhe < Te <tn) =&+ ¢a {—(TS'AR (9)} Quar
- 5=0
X exp(Qrré){ K (ti — &) — "K(ho — £)}Qra
x exp(Qaal)wa/Fr, (tu) — Fr (fio)]. (4.21)

This may usefully be plotted against the mean value of the following shut time, 7Tt,,
over the range 1, to ty;, i.c. E(Tlt, < T < 1) as given by equation (4.9).

5. Maximum likelihood fitting

Conventional filting

Up to now, the fitting of a kinctic model to experimental results has usually been
done in a rather haphazard way. For example, Colquhoun & Sakmann (1985) fitted
separately the distributions of obscrved open times, shut times, burst lengths, number
of openings per burst and total open time per burst. Approximate corrections for
missed events were made retrospectively, and an attempt made to find a mechanism,
and the rates for the mechanism, that would predict with reasonable accuracy the
various types of obscrvation. There are several problems with this sort of approach.
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Figure 4. A sequence of alternating apparent open sojourns and apparent shut sojourns.

First, the different types of distribution contain overlapping types of information, and
no way is known to combine the information from each type. Second, the correction
for missed events is, at best, approximate. And third, the analysis ignores entirely
the information from correlations between open and shut times. The idea of fitting a
mechanism directly to an entire sequence of open and shut times was first proposed
by Horn & Lange (1983). At that time there were no good corrections for missed
events, so the likelihood of the sequence could not be computed accurately. More
recently Sine et al. (1990) used an approximation to the distribution of observed
results to calculate the likelihood of a sequence of openings and shuttings, and used
this for fitting.

Suppose that we have a series of observed open and shut times which alternate
as shown in figure 4. The conventional maximum likelihood fit of the apparent open
times (see Colquhoun & Sigworth, 1995) would be done as follows. For open times we
have observed values of 1,1, %52, {3, - - - - The parameters to be estimated are the time
constants 7;, and their associated areas a;, for the conventional multiexponential Pp¥
in (5.2) (these parameters are, of course, mostly related very indirectly to the actual
rate constants in the underlying mechanism). The likelihood, [ | of a particular set
of parameters, i.e. the probability (density) of observing ¢t and t.z and t,3 and ...
given a particular set of parameters, can be taken as the product of the probability
densities for each opening (this is not strictly correct if successive open times are
correlated, but it is usually done anyway), i.e.

[ = f(tol)f(tOZ)f(toﬁ) ceey (51)

where

ka
Ft) =Y ai(1/7) exp(—t/7). (5.2)
i=1
In practice, it is usual to find the log-likelihood, L,

L =log(l), (5.3)

by adding the log[f(t)] values.

In order to fit the mechanism directly to the observations, the parameters to be
estimated would not be the time constants and areas of exponentials, but rather
they would be the actual rate constants in the mechanism, i.e. the elements of the Q
matrix. If, in addition, we allow for missed events, then the probability densities in
(5.1) could be found as specified in (2.14), rather than using the form in (5.2). Thus
the likelihood to be maximized when fitting the distribution of observed open times
would be

I = ¢4 Gar(to)ur - oA Gar(tor)ur - ¢aGar(tes). . ur. (5.4)

This, however, is unlikely to work well, because the number of parameters will almost
certainly be too large to be defined by the open times alone.
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Fitting the whole record
It is far better to fit open and shut times simultaneously so information from both
is taken into account. In the case where there is only one channel contributing to the
observed record this can be done very elegantly now that missed events can be taken
into account at the time of fitting (it was not possible when corrections for missed
events could be made only retrospectively). We simply calculate the likelihood as
the probability (density) of the whole observed sequence, namely

I = A Gar(to) Gralts) Gar(tor) Graltsa) Gar(te). .. ur. (5.5)

The parameters in @ are adjusted to maximize this likelihood. This not only takes
into account both open and shut times but also takes into account their sequence:
if there are correlations between open and shut times, as there are for nicotinic and
NMDA receptors, then there will be information in the sequence and this method ex-
ploits it. Notice that ¢ 4 is a (1 X k4) vector that gives the probability that an opening
starts in each of the open states at equilibrium (found as in (2.10)), and the first two
factors in (5.5), ¢4 ‘G 4x(to1) again form a (1 x kz) vector that gives the probability
that the next shut period starts in each of the shut states following an opening of
length t,,. Similarly the first three factors in (5.5), ¢4 ‘Gar(tor) Gra(ta), again
form a (1 x k4) vector that gives the probability that the next opening starts in
each of the open states following an opening of length £, and a shutting of length
ts1, and so on, right up to the end of the data record.

Note that, in this approach, no distributions at all are fitted. The likelihood in {5.5)
is maximized directly. However, in order to judge how well the estimates so produced
can describe the observations, distributions should be displayed after the fitting has
been done. The observations would be plotted as histograms in the usual way, and on
each histogram would be superimposed the theoretical distribution, calculated from
the estimate of ) obtained during the fitting process, as exemplified in §6. If the
fitting was successful there should be good agreement between the histogram and
the calculated distribution. The curves may well not fit as well as those obtained by
conventional fitting methods, because the calculated distributions are constrained
by the fact that they all derive from a common @ matrix. Conventional separate
fits to, for example, open times and shut times, lack this constraint (i.e. there is no
reason why the separate fits should be compatible with the same mechanism), so the
conventional fits may appear to be better.

FEstimatability of parameters

Even with the method just described, there will often not be enough information
in a single record for reasonable estimates to be made of all the rate constants in the
mechanism. This problem may be solved by fitting several different sorts of record
simultaneously (see below), but if this is not possible then it may be necessary to
fix some of the parameters to values that are either plausible guesses or, better,
have been estimated from separate experiments. The number of parameters to be
estimated may also be reduced by constraining the ratio of two parameters; for
example the association rate constant for a second binding reaction might plausibly
be constrained to be half of that for the first binding (see example in §6).

Simultaneous fits of scveral data sets

A virtue of the method defined by (5.5) is that it is easy to fit several different
data sets simultaneously. For example, single-channcl records obtained at several

Phil. Trans. R. Soc. Lond. A (1996)



Joint open-shut distributions 2575

different agonist concentrations may be combined, in order to increase the amount of
information that is available about the parameters. Still better, steady-state results,
with likelihoods calculated from (5.5), might be combined with non-stationary single-
channel data (e.g. concentration jumps or voltage jumps). The relevant theory for
single channels after a jump, with allowance for missed events, is given by Merlushkin
& Hawkes (1995) and Colquhoun et al. (1997). In each case we simply find the log-
likelihood, L = log(l), for each data set, denoted Ly, Lo, L3, etc., and maximize the
overall log-likelihood

L=L +Ly+Ls+---. (5.6)

What to do if the whole record is not from one channel

The method specified in (5.5) can be used when all the open and shut times that are
predicted by the model are contained in the observations. However, it is quite com-
mon for steady-state single-channel records to be obtained from membrane patches
that contain an unknown number of channels. 1t would be possible to generalize the
theory given here for a patch that contained N channels, but it is debatable whether
this would be worth while because in most cases N is unknown and cannot be esti-
mated from the data with any accuracy (see, for example, discussion in Colquhoun
& Hawkes 1995a, p. 431).

The problem of having an unknown number of channels in the patch has usually
been solved in the past by concentrating on sections of the record that, almost cer-
tainly, originate from one individual channel. For example, Sakmann et al. (1980)
pointed out that the clusters of openings, often seen at medium and high agonist con-
centrations are separated by long desensitized periods, and the openings within each
cluster almost certainly come from one individual channel. At low agonist concentra-
tions when activations are rare, it is impossible to know whether consecutive openings
are from the same channel or not (and therefore impossible to know whether the shut
time between the openings can be predicted by the model or not). Nevertheless it is
usual that we can say that some sections of the record are all from one channel. For
example Colquhoun & Sakmann (1985) exploited the fact that all the (1-10 or so)
openings in a burst (single activation) of the nicotinic receptor were almost certainly
from the same channel. The shut times within such bursts can be predicted by the
model. We can, therefore, use a modified version of the fitting method above if we
can define a critical gap length, t.; say, such that we can be virtually sure that
all openings separated by gaps shorter than this originate from the same channel.
Sequences of openings and shuttings defined in this way will be referred to as groups,
and all the openings and shuttings within a group can be fitted by calculating a
likelihood as in (5.5). However, the initial and final vectors used in (5.5), which were
appropriate for a record at equilibrium, are no longer appropriate in this casc. The
shut time that preccedes the first opening in a group is not known precisely, bul it
1s known lo be greater than t.i. The probability that the first opening in a group
begins in open state ¢ (state 1 or 2 in example (6.1) in the next section) must take
account, of this knowledge, rather than supposing (as the equilibrium ¢ 4 used above
does) that it could be any length. Likewise, the shutting that follows the last opening
of a group is known to be longer than t.., though how much longer is unsure. We
thus can define a likelihood for the rth group, with n openings in it, as

Lo = ¢y G ar(toa) Gralta) Gar(tez) Gralts) ... Garlton)er, (5.7)
where the initial and final vectors, ¢, and ex, are now those appropriate to the
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specified t.;, value. These can be defined, not by the method of defining bursts in
terms of a subset of short-lived shut states (as in Colquhoun & Hawkes 1982), but
directly from the specified t., value. Thus the (kr x 1) column vector at the end
does not have all entries = 1(ux) as in (5.5), but is

er = Hrua, (5.8)

where

Hpy— / ‘Gralt) dt. (5.9)
i

This simply specifies that after the last opening of the group one of the shut states
is entered and the channel remains within the shut (F) states for any time from ¢
to oo, before eventually reopening. This result can be evaluated, by use of (2.13),
(2.28) and (2.29) (exchanging A and F) as

kr
Hpa =Y "RiQraexp(Qanl)me om0/ (5.10)

i=1

where the 7; refer to the time constants for the asymptotic shut time distribution.

The first open interval of a group is also known to follow a shut time of at least
terin- If that previous shut time had started in state i, the initial vector for a group,
¢p, could be found by taking the ¢th row of Hr, and scaling it sum to unity. In
practice it usually makes little difference which row is used because, after a long
time (and 7. is large), the system is insensitive to initial conditions (all postulated
mechanisms are supposed ergodic). If in doubt, a sensible choice would be to average
the rows by the entry probability vector ¢, see (2.11), to give

by = ¢rHra/prHraua. (5.11)

Once t.4 is specified the observed record can be divided up in N groups and
the log-likelihood for each group, L;, can be calculated from (5.7). The final log-
likelihood, which is to be maximized, is then the sum of the log-likelihoods for each
group.

L=1IL+Ly+Ls+---+ Ly. (5.12)

6. Numerical examples
Fxample of a mechanism

If, for example, there is only one open state or only one shut state, then apparent
open and shut times are mutually independent random variables (see Colquhoun
& Hawkes (1987) for details). In this case the joint distribution of open and shut
times is simply the product of the separate open and shut time densities. In order to
illustrate the results given above we therefore need a mechanism with at least two
open states and at least two shut states. For the purposcs of illustrating the results
we shall use a mechanism, discussed in Colquhoun & Hawkes (1982) and Hawkes et
al. (1992), which has two open and three shut states. T'wo agonist molecules (A) can
bind to the shut (R) conformation, and either singly or doubly occupied channels
may open (R*). The schemc is illustrated diagrammatically in (6.1), each state being
numbered, and labelled as either shut (sct F) or open (set .A).
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state state -
number number
F(5) R
ko 2k,
B,
F(4) AR AR* A (1) (6.1)
L Q
2k, || ki 265 || K2
o 8, .
F(3) AR AR A (2)
Q,

The matrix of rate constants is shown in (6.2):

1 2 3 4 5
1 [ —(ar+ kioxa) Kilaaa 0 oy 0 1
2 2%, —(om+ 2k, 0 0
@= 3 0 By —(By+2k_y) 2%, 0 ,
4 By 0 kipoxa  —(B1 + kiyoxa + k1) ko
5 | 0 0 0 2ki1a —2k 1A |

(6.2)
where x4 is the agonist concentration. The particular values for the transition rates
that are used for the examples here are shown in (6.3), which is shown partitioned
according to whether states are open or shut. The transition rates are all in units of
s~1, and correspond to (6.2) with a concentration x5 = 0.1 pM:

—3050 500 : 0 3000 0
0.666 667 —500.666 667 - 500 0 0
| Qaa Qur |
Q= = .

Qra Qrr 0 15000 S 19000 4000 0

15 0 : 50 —2065 2000

0 0 : 0 10 —10 |

(6.3)

This model is similar to that inferred by Colquhoun & Sakmann (1985) as a de-
scription of suberyldicholine-activated ion channels in the frog muscle endplate. Low
agonist concentrations were used so the resting state (5) has a long mean lifetime
(100 ms) and channel activations are well-separated (by 3789 ms on average). The
channel activations occur in bursts which consist predominantly of scveral ‘long’
openings separated by brief shuttings. The ‘long openings’ usually represent a sin-
gle sojourn in state 2 (AoR*) (mean life ~ 2 ms), since direct transitions between
the two open states (1 to 2) are rare. The brief shuttings within a burst consist
mainly of single sojourns in state 3 (AR, the doubly liganded but shut state with
mean life 1/19000 ~ 53 ps), manifested as the large (73% of area) component of
shut times with a time constant of 53 ps. There are also rare longer shuttings within
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a burst (as shown by the component of the shut time distribution with time con-
stant 0.485 ms and 0.8% of area in table 1, and figure 5b. A few channel activations
are brief single openings corresponding mainly of single sojourns in state 1 (mean
life = 1/3050 = 0.328 ms), and these are not usually interrupted by brief closures
because a channel that returns from state 1 (AR*) to state 4 (AR) is much more
likely to lose its agonist molccule and return to the resting state (5) than it is to
reopen.

Stmulation of observations

Experimental obscrvations were simulated for the purposes of illustrating the the-
oretical distributions in §81 -5, and for testing the direet maximum likelihood fitting
method. The transition rates in the @ matrix in (6.3) were used for simulations.
A pscudo-random number generator (Wichmann & Hill 1985) was used to produce
exponentially distributed lifetimes in each individual state, and to decide which state
was entered next. Oscillations within the shut states (3, 4 and 5) werce concatenated
into a single shut time, and similarly for open times. The effect of limited time reso-
lution was simulated by imposing a fixed time resolution on the results, as described
by Colquhoun & Sigworth (1995). For the purpose of illustrating the fit of the rela-
tionships described above, 81 920 intervals (40 960 open times and 40 960 shut times)
were simulated with a resolution of 1 ps. After imposition of a resolution of 50 us
there were 22249 apparent openings; after imposition of a resolution of 100 ps therce
were 14712 apparent openings, and after imposition of a resolution of 200 s there
were 10049 apparent openings.

The distributions that werc described in carlier sections will be illustrated by show-
ing the theoretical values calculated from the cquations above, with the @ matrix
in (6.3). In cases where it is possible, the result will be superimposed on the corre-
sponding distribution of the simulated observations, to show that the equations do
indecd describe the effect, of limited time resolution. Note that the calculated dis-
tributions in figures 5--8, and the calculated means in figure 9, have not been fitted
to the simulated obscrvations, but have been calculated from the parameter values
(6.3) that were used for the simulation.

Display of distributions

Table 1 shows the time constants and areas for open-time distributions and shut
time distribution. The ideal distribution (no events missed) is shown in the column
headed £ = 0. The other columns show the time constants (1) and areas () for the
exponential components of the agymptotic distributions of apparent open and shut
times with resolutions of £ = 50, 100 and 200 us, from cquations (2.31) and (2.32).
The arcas projected back to £ = 0 arc also given; they are denoted o’ and calculated
as in (2.34).

Figure 5 shows the distributions of apparcent open time with resolutions of € = 50,
100 and 200 ps. In each case the ideal distribution (€ = 0, appropriately scaled) is
superimposed as a dashed line. The continuous line shows the distribution calculated
from (2.14), with the exact form being used for £ < ¢ < 3¢, and the asymptotic form
(as given in table 1) for longer open times. The caleulated distribution fits the sim-
ulated observations closely in cach case. It is clear [rom figure 5 that the proportion
of ‘short openings’ appears to increase as the resolution gets worse. The reason for
this is clear from table 1. The time constant (of the asymptotic approximation) for
the faster component, 0.328 ms, is hardly affected by the resolution, because short
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Figure 5. Distribution of apparent open times, with resolutions (£) of (a) 50 ps, (b) 100 ps
and (c) 200 ps. In this figure, and all subsequent figures, histograms are presented to show the
distribution of log (duration) with a square root transformation of the ordinate (McManus et
al. 1987; Sigworth & Sine 1987). The solid line shows the theoretical distribution, calculated
from equations (2.24), (2.31) and (2.32); the exact calculation was used up to ¢t = 3¢, and the
asymptotic form was used for larger ¢. The time constants and areas for the asymptotic form
are given in table 1. The histogram shows simulated data, on which the appropriate resolution
has been imposed (see text). The dashed line shows the ideal distribution (scaled to have the
same area above t = £) in which no events are missed.

openings are rarely interrupted by short shuttings, so there is nothing to be missced.
On the other hand, the time constant for ‘long openings’ increases from 1.997 ms in
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Table 1. Time constants (7, in ms) and areas (a) for the ideal (€ = 0) distribution of open and
shut times, and for the asymptotic distribulions of apparent open and shut times with resolutions

of £ =50, 100 and 200 ps

(The areas projected back to ¢ = 0, denoted a’ and calculated as in (2.34), are also given.)

resolution { ps) E=0 £=50 &£=100 ¢&=200

open times 7 0.3279  0.3281  0.32841 0.3289
a;  0.0724  0.1163  0.1507 0.1588
ai  0.0724 0.1311  0.1915 0.2532

5 1.997  3.887 6.138 8.907
as 0.9276  0.8837  0.8492  0.8411
ahy 09276 0.8686  0.8085 0.7468

shut times T 0.0526  0.05643  0.0585 0.0791
ar 0.7297  0.5152  0.2858 0.0163
ay 07297 0.7277  0.6916 0.3798

7o 04847 04853  0.4859 0.4870
az  0.0084 0.0131  0.0167 0.0176
ay 0.0081  0.0082  0.0090 0.0174
T3 3789 3952 4105 41387

az  0.2619  0.4694  0.6835 0.9196
ay  0.2619  0.2642  0.2994 0.6028

the ideal casc to 8.907 ms with a resolution of 200 ps. The ‘long openings’ are often
separated by short closures, most of which are missed with low resolution, so there
appear to be fewer, but longer, openings.

The apparent shui-time distribution

Figure 6 shows the distributions of apparent shut times, displayed as for the open
times in figure 5. In strong contrast to the results for open times, the distributions
are little affected by the resolution (apart from the fact that shut times less than £
are obviously missing). This, of course, is a result of the fact that there are relatively
few short openings, so even with poor resolution, fow openings are missed. Inspection
of the results for shut times in table 1 reinforees this conclusion. The area, a;, for
the shortest component falls rapidly because of the loss of short, shuttings, but when
projected back to ¢ = 0 (sec cquation (2.33)) the valucs of af are seen to change
little from the valuc of 73% scen with perfect resolution, for resolutions of 50 and
100 ps. There is only a slight lengthening of the longest component of shul, times as
the resolution gets worse, and the intermediate and short components change little
down to a resolution of 100 ps. At the really poor resolution of £ = 200 ps (at which
97.8% of the short-component shuttings are too short, to be detected), the values in
table 1 suggest that 7 and «f are affected. Howcever, inspection of figure 6¢ shows that
ceven with a 200 ps resolution, the shut-time distribution is not much distorted. In
this case the figures in table 1 arc misleading, because the asymptotic approximation
beecomes poor for short times, as shown in figure 7.

The result in figure 7a shows that the asymptotic open-time distribution fits very
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Figure 6. Distribution of apparent shut times, with resolutions of (a) 50 ps, (b) 100 ps and
(¢) 200 ps. The solid line shows the theoretical distribution; the exact calculation was used up
to t = 3¢, and the asymptotic form was used for larger ¢t. The time constants and areas for
the asymptotic form are given in table 1. The histogram shows simulated data, on which the
appropriate resolution has been imposed (see text). The dashed line shows the ideal distribution
(scaled to have the same area above t = £) in which no events are missed.

well right down to t = £; there is hardly any nced for the exact solution in this
case. However, the curves in figure 7b show that, when the resolution is very poor
(£ = 200 ps), the asymptotic approximation for shut times becomes inaccurate below
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Figure 7. (a) Distribution of apparent open timme with poor resolution, £ = 200 ps. The solid line
shows the exact distribution from ¢ = 0.2 ms to ¢ = 0.6 ms, and the asymptotic form thereafter,
as in figure 5¢. The histogram is as in ligure 5c. The dashed line shows the asymptotic form,
projected back to ¢ = 0. In this case the asymptotic form describes the data well over the whole
range. (b) Distribution of apparent shut time with poor resolution, £ = 200 ps. The solid line
and histogram are as in figure 6¢, except that the distribution is shown only up to ¢ = 10 ms,
for clarity. The dashed line shows the asymptotic form, projected back to ¢ = 0. In this case the
asymptotic form is a good approximation only for £ > 0.3 ms. (¢). Empirical [it of a mixture
of three exponentials to simulated shut data with a resolution of 200 ps, as shown in figure 6¢.
The fit was done by the conventional maximum likelihood method (see Colquhoun & Sigworth
1995). All values were included in the fit, but the result is shown here only up to 10 ms, to
facilitate comparison with (). The values for the fitted parameters are shown in the box.
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t = 2§, though the cxact distribution still fits the data well (and it is close to the
ideal distribution, as shown in figure 6¢). In figure 7, the asymptotic distributions
are projected back to ¢t = 0, though of course their derivation is based only on large
t values, so the poor fit below ¢ = 2¢ is not cntirely surprising. Below 600 ps (3£)
the exact distribution has been used to calculate the shut time distribution, and this
exact distribution is not a simple multiexponential. Neverthceless, it is interesting
to see what happens when the simulated shut times with & = 200 ps, as shown in
figurc 6¢ and 7b, arc fitted over the whole range with a mixturc of three exponcntials,
because this is what would usually be done with real data. The result of doing this is
shown, for the shorter shut times, in figure 7e. Not surprisingly, a good fit is obtained
with three exponentials, and the fastest shut time component has a time constant
of 59.9 ps. Even in this extreme case, the fitted time constants do not differ grossly
from the idcal casc (7 = 52.6 ps for the fastest component).

The results in figures 5—7 show why the simple correction for missed events that was
employed by Colquhoun & Sakmann (1985) worked quite well. The fact that the shut
time distribution (unlike the open-time distribution) is relatively little distorted by
misscd cvents allows a fit like that shown in figure 7¢ to be projected back to ¢ = 0 to
obtain a rcasonably accurate estimate of the number and duration of brief shuttings
that have been missed. With this cstimate, and the assumption that most missed
shuttings occur adjacent to long openings (as suggested by the data), a reasonably
accurate retrospective correction can be made.

Open time distribution conditional on adjacent shut-time range

In order to compare a theorctical distribution with experimental values, it is nec-
essary to look at the distribution of open times that arc adjacent to shut times in a
specified range of values (equations (4.1) and (4.19)), rather than thosc adjacent to
an exactly specified shut time (equations (3.2) and (3.17)). The graphs in figure 8
show examples of such conditional open-time distributions. The calculated distribu-
tion provides a good fit to the histogram of simulated observations in cach case. In
figures 8a, ¢ the distribution of apparent open times that are adjacent to short shut-
tings arc shown (for resolutions of 50 and 200 ps, respectively). In cach case there is
a deficiency of short openings, and an cxcess of long openings, compared with the
unconditional distribution (which is shown as a dashed line in figure 8; it is what is
plotted as a solid line in figure 5). Figures 8b, d show the distributions of apparent
open times (for resolutions of 50 and 200 ps, respectively) that are adjacent to long
shut times (any shut time longer than 10 ms). The results with € = 50 ps (figure 8b)
show an excess of short openings, and a deficiency of long openings next to long
shut times, but at the very poor resolution of 200 ps (figure 8d), this effect is barely
visible.

As mentioned above, the time constants for the (asymptotic) conditional distribu-
tions of open time arc exactly the same as those for the unconditional distribution.
For example, with a resolution of 50 ps these are 0.3281 ms and 3.887 ms, and the
(modified) arcas for cach of these are 0.131 and 0.869 (see table 1). The changed
appcarance of the conditional distribution is entirely a result of the dependence of
the entry probabilities for each open state on the length of the adjacent shut times,
and the consequent change in the relative (asymptotic) areas associated with cach
time constant. In the case where the resolution is 50 ps, the cquilibrium probability
that an apparcnt opening starts in open state 1 (AR*) is 0.1187, and for state 2
(A2R*) it is 0.8813; these are the elements of ¢4 which were defined in (2.10). For
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Figure 8. Distributions of apparent open times conditional on the length of the adjacent shut
time. The histograms show the apparent open times that were preceded or followed by shut
times in the specified range. The continuous lines show the distribution calculated from (4.1) for
the distribution of open times conditional on the preceding shut time being in the specified range
(this is indistinguishable from the corresponding distribution that is conditional on the following
shut time—see comments preceding equation (3.8)). The dashed lines show the unconditional
distributions of open time, as illustrated in figure 5. The resolution is 50 ps in (a) and (b), and
200 ps in (¢) and (d). The distributions conditional on being adjacent to short shut times are
shown in (a) and (c): in (a) the shut-time range is from 0.05 ms (the resolution) to 0.15 ms, and
in (c¢) the shut-time range is 0.2 ms to 1 ms. The distributions conditional on being adjacent to
long shut times are shown in (b) and (d): in both (b) and (d) all shut times longer than 10 ms
are included in the range.

the distribution of open times conditional on a preceding shut-time range, the entry
probabilities are given by the result following (4.7). For apparent open times preceded
by apparent shuttings in the range 0.05-0.15 ms (figure 8a) the entry probabilities
are 0.001 08 and 0.9989 for states 1 and 2, respectively, and the areas for each of the
asymptotic time constants are 0.00094 and 0.99906. The reasons for these changes
are easily explained. The brief shut times consist largely of sojourns in state 3 (A3R)
which is connected directly to open state 2 (A;R*) by a fast step, but state 3 is con-
nected only indirectly (via slower steps) to open state 1. Thus, after a short interval,
the next opening is much more likely (probability 0.9989) to start in state 2 than in
state 1 (probability 0.00108). Since sojourns in open state 2 are longer than those
in open state 1, this results in the area of the long component of the conditional
open-time distribution (7 = 3.887 ms) being much larger (0.999 06) than the area for
the faster time constant (7 = 0.3281 ms) which has almost disappeared in figure 8a
(area a’ = 0.00094).

Conversely, for apparent openings that are preceded by long (greater than 10 ms)
apparent shut times (figure 8b), the entry probabilities are 0.2468 and 0.7532 for
states 1 and 2 (compared with 0.1187 and 0.8813 for the unconditional distribution of
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Figure 9. Dependence of the mean open time on the adjacent shut time, for a resolution of
& = 50 ps. The theoretical relationship, from equations (3.4) and (3.19), is shown as the curve
labelled ‘continuous’ (the curves for preceding shut time and following shut time superimposc).
The scven shut-time ranges that were used for comparison of the results with simulated data,
together with the number (n) of apparent openings that were adjacent to shuttings in each
range, werc as follows: 0.05 0.1 ms (n = 13928); 0.1 0.2 ms (n = 8106); 0.2 1 ms (n = 1766);
1 30 ms (n = 198), 30 300 ms (n = 1352), 300-3000 ms (n = 9360), and longer than 3000 ms
{n = 9786). The mcans of the apparent open times arc plotted as filled diamonds (joined by
dotted lines), with error bars that indicate the standard deviation of the mean (in each range
the standard deviation of the open times is similar to its mean, so the differences in the size of
the error bars are mainly a reflection of the number of shut times in cach range). The mean open
times are plotted against the mean of all shut times in the corresponding range. The calculated
values (from cquations (4.8) and (4.21), which are superimposed) are plotted as hollow circles
(joined by straight lines).

apparent open times), and the asymptotic arcas for the fast and slow components are
0.269 and 0.731 (compared with 0.131 and 0.869 for the unconditional distribution).

These conditional distributions show clearly the negative correlation between the
length of an opening and the length of an adjacent shut time (this holds equally for
the preceding shut time and the following shut time). This correlation can also be
seen, in a different form, in the graphs in figures 9 and 10.

Dependence of mean open time on adjacent shut time

The correlation that was illustrated in figure 8, is also apparent when we plot the
mean length of an opening against the length of an adjacent shut time. The theo-
retical relationship, from equations (3.4) and (3.19), is shown as the curve labelled
‘continuous’ in figure 9 (the curves for preceding shut time and following shut time
superimposc). It has quite a subtle shape that should be useful for discrimination
between possible mechanisms. 1lowever, the extent to which it can be compared with
experimental observations is limited because, as is clear from figure 6, there are few
shut times between 0.5 and 100 ms in length in this particular case. Again, for com-
parison with observations, it is neccssary to use a range of adjacent shut times, and
the mean value of open times that are adjacent to shut times in a specified range
can be found from cquations (4.8) and (4.21). These calculated values are shown, for
scven different shut-time ranges, as hollow circles (joined by straight lines, labelled
‘calculated’) in figure 9. They are plotted against the mean of the shut times in the

Phil. Trans. R. Soc. Lond. A (1996)



2586 D. Colquhoun, A. G. Hawkes and K. Srodzinski

dependancy

3
SIFTT
OO

li]:’

ST,
SOOS KL

Figure 10. The calculated dependency plot with allowance for missed events, as defined in
equation (3.22) is shown, for the mechanism in (6.1)—(6.3). The calculations were for a resolution
of 50 ps. The axcs extend from 50 ps to 50 ms for the apparent open time, and from 50 ps to
500 ms for the apparcent shut time. The deficiency of short openings adjacent to short shut times
is shown by the depression at the front corner of the graph, while the clevation at the right-hand
corner shows the excess of short openings adjacent to long shut times.

corresponding shut-time range. The corresponding values for the observations are
shown as filled diamonds (joined by dotted straight lines) in figure 9. The agree-
ment between the simulated observations and the calculated values is good, given
the relatively small number of shut times in some of the ranges.

Dependency plot

The dependency plot with allowance for missed events (as defined in cqua-
tion (3.22)) is shown in figure 10, for the mechanism in (6.1) (6.3). It is plotted
for results with a resolution of 50 ps. It shows the deficiency of long openings adja-
cent to short shuttings (and conversely) in an attractive three-dimensional manner.
However, it is necessary to have a large number of observations to produce the equiva-
lent diagram from cxperimental results, especially in a case like the present for which
some shut-time durations occur only rarcly in the data. When the dependency plot
is drawn for obscrvations with lower resolution, the main effect (in this cxample at
least) is to cut off the part of the graph for short times without having a dramatic
cffect on the rest of the graph.

Some examples of direct maximum likelihood fitting

The dircet maximum likelihood method described in §5 has been tested using
simulated observations. For this purpose a rccord was generated with 5120 open
times, 5120 shut times and a resolution of 50 ps. The likelihood is defined in (5.5),
or, in the case where more than one channel is present, by (5.7)-+(5.12). The likeli-
hood was maximized by a Simplex method. The time taken for convergence depends
cnormously on the number of paramecters, the number of observations and on the
quality of the initial guesses; on a fast PC it may takc a few minutes or up to an
hour or more. In each case the quality of the fit would be judged, after the fitting
was completed, by using the cstimated parameters (@ matrix) to construct plots of
the sort exemplified above.
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Table 2. Some examples of fitting for simulated data consisting of 5120 open times and 5120
shut times, with a resolution of 50 ps, in the case where it is assumed that only one channel
contributes to the data

(Constrained values arc denoted with 1. In each case the parameter 2k*, is determined from
the others by the microscopic reversibility (MR) constraint, so it is not estimated separately.
The log(likelihood) values for the initial guesses, and the final maximised values are given at
the bottom for each fit.)

fit 1 fit 2 fit 3
truc initial final initial final initial final
paramecter units value guess cstimate guess estimatc guess estimatc
v s ! 3000 10000 2900 500 2747 1000 2845
B1 57! 15 1000 16.9 3 15.8 3 6.685
kiy M7'sT' B x10% 5% 107 5.98 x 10§ 15 x 10° 5.25 x 10§ 5 x 107 1.87 x 10°
2k* 5 st 0.666667 MR 0.786 MR 0.748 MR 0.2842
(12 s~ 500 100 514 100 500.4 5000 17046
Ba st 15000 30000 15789 3000 15492 50000 90134
2k o st 4000 1000 4148 10000 4010 1000 639.6
iz M7's™ 5x10° 5% 107 598 x10°% 15 x 10% 5.25 x 10° 5x 107 1.87 x 10°
k_q 57! 2000 1000 2015 10000 2310 1000 1440
2k M7ts™t 1 x10® 1x107 0.86x10° 5x10% 1.08 x 10° 1 x 107 1.54 x 10%
log(likelihood) 22423.5  38790.2 33640.4 38791.1 309954 38677.4

Fitting with different initial guesses

Table 2 shows some examples of fits in cases where the openings were assumed to
originate from one channel only, using different initial guesses for the paramcters.
Attempts to fit all the paramcters (other than that determined by microscopic re-
versibility) usually led to values of k%, and k*, that were much too small (though
in about the right ratio). Transitions between A;R and A;R* arc probably too rare
for there to be much information about their frequencies in the data. However, if
we constrain k%, to be cqual to k4, then fitting is successful, though not from all
initial guesses. The fits labelled “fit 17 and ‘fit 27 in table 2 started from very different
initial guesses, but both give quite reasonable estimates of the rate constants. If, on
the other hand, the initial gucsses for both as and @, were much too big then both
of these parameters became even bigger, as illustrated in fit 3 (table 2), and the
cstimates of the other parameters were poor. This erroneous fit has attempted to fit
long openings as though they consisted of a series of many short openings and even
shorter shuttings. However, this sort of error is unlikely, becausc the apparent long
open time (table 1 and figure 5a) is about 4 ms, the reciprocal of which, 250 s71,
might make a sensible initial gucss for ag; so a guess of 5000571, as used in fit 3,
would be rather implausible. In the simplest casce of a mechanism with two states
only, it has been shown that therc arc two different solutions to the missed events
problem, onc with much bricfer open and shut times than the other: the behaviour
of more complex modecls in this respect is not known, but it is possible that the poor
fit scen in fit 3 reflects behaviour analogous with the ‘fast solution’ in the two-state
casc (sce Colquhoun & Hawkes 1995a, p. 455).
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Table 3. Some examples of fitting for simulated data consisting of 5120 open times and 5120
shut times, with a resolution of 50 ps, in the case where the number of channels is not known

(In all cases leriy was taken as 5 ms. Constrained valucs are denoted with §, fixed values arc
denoted with . In cach case the parameter 2k, is determined from the others by the microscopic
reversibility (MR) constraint, so it is not estimated separately. In the last column & 2 was
constrained to be cqual to k_j, so only the latter was cstimated.)

fit 1 fit 2 fit 3
true initial final final final
paramcter units value guess estimate cstimate  estimate
a s ' 3000 9000 3097 3337 2830
3 g ! 15 5 34.7 10.2 14.7
ki, M‘'s ' 5x10° 5x10° 962x107 5x10§ 5x10}
2k, s ! 0.666 667 MR 0.105 0.413 0.681
az 57! 500 100 495.3 539.3 504.6
Ba 5 ! 15000 5000 15371 16 359 15555
2k s ! 4000 10000 4356 4103 4036
k2 M 's ' 5x10%°  Ix10”  14x10”  5x10f  5x 10
ko st 2000 5000 2747 1607 20184
2k 1 M~ 's™h 1x10°  2x10®° 236x10°  1x10] 1x 10

Fitting groups of openings when there is more than one channel

If the simulated observations were from a patch that contained an unknown num-
ber of channels, we could still be sure that openings separated by less than about
5ms were almost certainly from the same channel: roughly speaking, the 52.6 ps
component of shut times (sce table 1), and the 0.485 s component, are ‘shut times
within a single activation’, whercas the 3789 ms component is ‘between activations’.
Table 3 gives some cxamples of fits obtained by taking .. = 5 ms in (5.7)—(5.12).

The initial guess for cach of the paramcters is shown in column 4 of table 3.
In cach case the parameter 2%, is determined from the others by the microscopic
reversibility constraint, so it is not estimated scparately. The final estimates are
shown in columns 5-7. In the first of these (fit 1) all the paramcters (apart from
2k*,) were free to vary. The cstimates arc of modest quality, and 2k, is quite
wrong: this is to be expected since the estimate of the association rate constant for
the first binding step will be determined to a large extent by the frequency of channel
activations, and this is not available when the number of channels is unknown. The
sccond set of estimates (fit 2) was found by fixing all of the association rate constants
atl their correct values, and the estimates arc scen to be better. For the the third set
of estimates (fit 3), in addition the value of 2k_5 was constrained to be twice that
of k..1, so only the latter was estimated. In this case the estimates arc quite good.
It can be concluded that the information in a steady-state record at a single agonist
concentration is insufficient to determine all of the rate constants in @ when the
number of channels is unknown. However, if some rates (particularly the association
rate constants) can be supplied in advance, good estimates of the others can be
found.
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